[
CYP
Metabolism
Neuroinflammation
Positron Emission Tomography
TSPO
[18F]DPA-714
Journal
European journal of nuclear medicine and molecular imaging
ISSN: 1619-7089
Titre abrégé: Eur J Nucl Med Mol Imaging
Pays: Germany
ID NLM: 101140988
Informations de publication
Date de publication:
09 2023
09 2023
Historique:
received:
06
12
2022
accepted:
16
05
2023
medline:
2
10
2023
pubmed:
9
6
2023
entrez:
8
6
2023
Statut:
ppublish
Résumé
We aimed to assess the effect of concomitant medication, age, sex, body mass index and 18-kDa translocator protein (TSPO) binding affinity status on the metabolism and plasma pharmacokinetics of [ The non-metabolized fraction of [ As no significant differences were observed between arterial and venous [ Any co-medication that inhibits or induces CYP3A4 as well as TSPO genetic status, age, BMI and sex mostly contribute to interindividual variations of the radiotracer metabolism and/or concentration that may affect the input function of [ INFLAPARK, NCT02319382, registered December 18, 2014, retrospectively registered; IMABIO 3, NCT01775696, registered January 25, 2013, retrospectively registered; INFLASEP, NCT02305264, registered December 2, 2014, retrospectively registered; EPI-TEP, EudraCT 2017-003381-27, registered September 24, 2018.
Identifiants
pubmed: 37291448
doi: 10.1007/s00259-023-06286-1
pii: 10.1007/s00259-023-06286-1
doi:
Substances chimiques
N,N-diethyl-2-(2-(4-(2-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo(1,5-a)pyrimidin-3-yl)acetamide
0
Cytochrome P-450 CYP3A
EC 1.14.14.1
Fluorine Radioisotopes
0
Carrier Proteins
0
Receptors, GABA
0
TSPO protein, human
0
Banques de données
ClinicalTrials.gov
['NCT01775696', 'NCT02319382', 'NCT02305264']
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3251-3264Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Cosenza-Nashat M, Zhao ML, Suh HS, et al. Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol Appl Neurobiol. 2009. https://doi.org/10.1111/j.1365-2990.2008.01006.x .
doi: 10.1111/j.1365-2990.2008.01006.x
pubmed: 19077109
Zhang L, Hu K, Shao T, et al. Recent developments on PET radiotracers for TSPO and their applications in neuroimaging. Acta Pharm Sin B. 2021. https://doi.org/10.1016/j.apsb.2020.08.006 .
doi: 10.1016/j.apsb.2020.08.006
pubmed: 35847519
pmcid: 9279717
Hamelin L, Lagarde J, Dorothée G, et al. Distinct dynamic profiles of microglial activation are associated with progression of Alzheimer’s disease. Brain. 2018. https://doi.org/10.1093/brain/awy079 .
doi: 10.1093/brain/awy079
pubmed: 29608645
Bodini B, Poirion E, Tonietto M, et al. Individual Mapping of Innate Immune Cell Activation Is a Candidate Marker of Patient-Specific Trajectories of Worsening Disability in Multiple Sclerosis. J Nucl Med. 2020. https://doi.org/10.2967/jnumed.119.231340 .
doi: 10.2967/jnumed.119.231340
pubmed: 32005777
pmcid: 7383077
Lavisse S, Goutal S, Wimberley C, et al. Increased microglial activation in patients with Parkinson disease using [
doi: 10.1016/j.parkreldis.2020.11.011
pubmed: 33242662
Hashimoto K, Inoue O, Suzuki K, et al. Synthesis and evaluation of 11C-PK11195 for in vivo study of peripheral-type benzodiazepine receptors using positron emission tomography. Ann Nucl Med. 1989. https://doi.org/10.1007/bf03164587 .
doi: 10.1007/bf03164587
pubmed: 2641457
Chauveau F, Van Camp N, Dollé F, et al. Comparative evaluation of the translocator protein radioligands 11C-DPA-713, 18F-DPA-714, and 11C-PK11195 in a rat model of acute neuroinflammation. J Nucl Med. 2009. https://doi.org/10.2967/jnumed.108.058669 .
doi: 10.2967/jnumed.108.058669
pubmed: 19223401
James ML, Fulton RR, Vercoullie J, et al. DPA-714, a new translocator protein-specific ligand: synthesis, radiofluorination, and pharmacologic characterization. J Nucl Med. 2008. https://doi.org/10.2967/jnumed.107.046151 .
doi: 10.2967/jnumed.107.046151
pubmed: 18413395
Lavisse S, Inoue K, Jan C, et al. [18F]DPA-714 PET imaging of translocator protein TSPO (18 kDa) in the normal and excitotoxically-lesioned nonhuman primate brain. Eur J Nucl Med Mol Imaging. 2015. https://doi.org/10.1007/s00259-014-2962-9 .
doi: 10.1007/s00259-014-2962-9
pubmed: 25488184
Arlicot N, Vercouillie J, Ribeiro MJ, et al. Initial evaluation in healthy humans of [18F]DPA-714, a potential PET biomarker for neuroinflammation. Nucl Med Biol. 2012. https://doi.org/10.1016/j.nucmedbio.2011.10.012 .
doi: 10.1016/j.nucmedbio.2011.10.012
pubmed: 22172392
Lavisse S, García-Lorenzo D, Peyronneau MA et al. Optimized Quantification of Translocator Protein Radioligand
Hamelin L, Lagarde J, Dorothée G et al. Clinical IMABio3 team. Early and protective microglial activation in Alzheimer's disease: a prospective study using 18F-DPA-714 PET imaging. Brain. 2016; https://doi.org/10.1093/brain/aww017 .
Yrondi A, Aouizerate B, El-Hage W, et al. Assessment of Translocator Protein Density, as Marker of Neuroinflammation, in Major Depressive Disorder: A Pilot, Multicenter, Comparative, Controlled, Brain PET Study (INFLADEP Study). Front Psychiatry. 2018. https://doi.org/10.3389/fpsyt.2018.00326 .
doi: 10.3389/fpsyt.2018.00326
pubmed: 30087626
pmcid: 6066663
Backhaus P, Roll W, Beuker C, et al. Initial experience with [
doi: 10.1007/s00259-019-04662-4
pubmed: 31960097
pmcid: 7338821
Owen DR, Yeo AJ, Gunn RN, et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab. 2012. https://doi.org/10.1038/jcbfm.2011.147 .
doi: 10.1038/jcbfm.2011.147
pubmed: 22008728
Peyronneau MA, Saba W, Goutal S, et al. Metabolism and quantification of [(18)F]DPA-714, a new TSPO positron emission tomography radioligand. Drug Metab Dispos. 2013. https://doi.org/10.1124/dmd.112.046342 .
doi: 10.1124/dmd.112.046342
pubmed: 23065531
Guengerich FP. Cytochrome P450 research and The Journal of Biological Chemistry. J Biol Chem. 2019. https://doi.org/10.1074/jbc.tm118.004144 .
doi: 10.1074/jbc.tm118.004144
pubmed: 31811088
pmcid: 6970918
Vicente-Rodríguez M, Singh N, Turkheimer F, et al. Resolving the cellular specificity of TSPO imaging in a rat model of peripherally-induced neuroinflammation. Brain Behav Immun. 2021;96:154–67. https://doi.org/10.1016/j.bbi.2021.05.025 .
doi: 10.1016/j.bbi.2021.05.025
pubmed: 34052363
pmcid: 8323128
Guilarte TR, Alexander N, Rodichkin AN, et al. Imaging neuroinflammation with TSPO: A new perspective on the cellular sources and subcellular localization. Pharmacology & Therapeutics. 2022;234:108048. https://doi.org/10.1016/j.pharmthera.2021.108048 .
doi: 10.1016/j.pharmthera.2021.108048
Fang YHD, McConathy JE, Yacoubian TA, et al. Image Quantification for TSPO PET with a Novel Image-Derived Input Function Method. Diagnostics. 2022;12:1161. https://doi.org/10.3390/diagnostics12051161 .
doi: 10.3390/diagnostics12051161
pubmed: 35626315
pmcid: 9140104
Wimberley C, Lavisse S, Hillmer A, et al. Kinetic modeling and parameter estimation of TSPO PET imaging in the human brain. Eur J Nucl Med Mol Imaging. 2021;49:246–56. https://doi.org/10.1007/s00259-021-05248-9 .
doi: 10.1007/s00259-021-05248-9
pubmed: 33693967
pmcid: 8712306
Kuhnast B, Damont A, Hinnen F, et al. [18F]DPA-714, [18F]PBR111 and [18F]FEDAA1106-selective radioligands for imaging TSPO 18 kDa with PET: automated radiosynthesis on a TRACERLAb FX-FN synthesizer and quality controls. Appl Radiat Isot. 2012. https://doi.org/10.1016/j.apradiso.2011.10.015 .
doi: 10.1016/j.apradiso.2011.10.015
pubmed: 22104496
Ma B, Prueksaritanont T, Lin JH. Drug interactions with calcium channel blockers: possible involvement of metabolite-intermediate complexation with CYP3A. Drug Metab Dispos. 2000;28(2):125–30.
pubmed: 10640508
Guay DR. Extended-release alfuzosin hydrochloride: a new alpha-adrenergic receptor antagonist for symptomatic benign prostatic hyperplasia. Am J Geriatr Pharmacother. 2004. https://doi.org/10.1016/s1543-5946(04)90003-7 .
doi: 10.1016/s1543-5946(04)90003-7
pubmed: 15555475
Denisov IG, Baylon JL, Grinkova YV, et al. Drug-Drug Interactions between Atorvastatin and Dronedarone Mediated by Monomeric CYP3A4. Biochemistry. 2018. https://doi.org/10.1021/acs.biochem.7b01012 .
doi: 10.1021/acs.biochem.7b01012
pubmed: 29200287
Sönnerstam E, Sjölander M, Lövheim H, et al. Clinically relevant drug-drug interactions among elderly people with dementia. Eur J Clin Pharmacol. 2018. https://doi.org/10.1007/s00228-018-2514-5 .
doi: 10.1007/s00228-018-2514-5
pubmed: 29967921
pmcid: 6132551
Choi YH, Lee MG. Pharmacokinetic and pharmacodynamic interaction between nifedipine and metformin in rats: competitive inhibition for metabolism of nifedipine and metformin by each other via CYP isozymes. Xenobiotica. 2012. https://doi.org/10.3109/00498254.2011.633177 .
doi: 10.3109/00498254.2011.633177
pubmed: 23252721
Nakamura K, Ariyoshi N, Iwatsubo T, et al. Inhibitory effects of nicardipine to cytochrome P450 (CYP) in human liver microsomes. Biol Pharm Bull. 2005. https://doi.org/10.1248/bpb.28.882 .
doi: 10.1248/bpb.28.882
pubmed: 16327165
Jann MW, Shirley KL, Small GW. Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin Pharmacokinet. 2002. https://doi.org/10.2165/00003088-200241100-00003 .
doi: 10.2165/00003088-200241100-00003
pubmed: 12162759
Taavitsainen P, Kiukaanniemi K, Pelkonen O. In vitro inhibition screening of human hepatic P450 enzymes by five angiotensin-II receptor antagonists. Eur J Clin Pharmacol. 2000. https://doi.org/10.1007/s002280050731 .
doi: 10.1007/s002280050731
pubmed: 10877007
Subrahmanyam V, Renwick AB, Walters DG, et al. Identification of cytochrome P450 isoforms responsible for cis-tramadol metabolism in human liver microsomes. Drug Metab Dispos. 2001;29(8):1146–55.
pubmed: 11454734
Caccia S. Metabolism of the newer antidepressants An overview of the pharmacological and pharmacokinetic implications. Clin Pharmacokinet. 1998;34(4):281–302. https://doi.org/10.2165/00003088-199834040-00002 .
doi: 10.2165/00003088-199834040-00002
pubmed: 9571301
Martin P, Gillen M, Millson D, et al. Effects of CYP3A4 Inhibitors Ketoconazole and Verapamil and the CYP3A4 Inducer Rifampicin on the Pharmacokinetic Parameters of Fostamatinib: Results from In Vitro and Phase I Clinical Studies. Drugs R D. 2016. https://doi.org/10.1007/s40268-015-0118-4 .
doi: 10.1007/s40268-015-0118-4
pubmed: 26748647
pmcid: 4767723
Armijo JA, Vega-Gil N, Shushtarian M, et al. 10-Hydroxycarbazepine serum concentration-to-oxcarbazepine dose ratio: influence of age and concomitant antiepileptic drugs. Ther Drug Monit. 2005. https://doi.org/10.1097/01.ftd.0000155342.93489.fd .
doi: 10.1097/01.ftd.0000155342.93489.fd
pubmed: 15795652
Kam WW, Meikle SR, Zhou H, et al. The 18 kDa translocator protein (peripheral benzodiazepine receptor) expression in the bone of normal, osteoprotegerin or low calcium diet treated mice. PLoS ONE. 2012. https://doi.org/10.1371/journal.pone.0030623 .
doi: 10.1371/journal.pone.0030623
pubmed: 22586451
pmcid: 3935644
Rizzo G, Veronese M, Tonietto M, et al. Generalization of endothelial modelling of TSPO PET imaging: Considerations on tracer affinities. J Cereb Blood Flow Metab. 2019. https://doi.org/10.1177/0271678X17742004 .
doi: 10.1177/0271678X17742004
pubmed: 29135382
Wolbold R, Klein K, Burk O, et al. Sex is a major determinant of CYP3A4 expression in human liver. Hepatology. 2003. https://doi.org/10.1053/jhep.2003.50393 .
doi: 10.1053/jhep.2003.50393
pubmed: 14512885
Cotreau, M.M, von Moltke, L.L & Greenblatt, D.J. The Influence of Age and Sex on the Clearance of Cytochrome P450 3A Substrates. Clin Pharmacokinet. 2005; https://doi.org/10.2165/00003088-200544010-00002 .
Wang P, Shao X, Bao Y, et al. Impact of obese levels on the hepatic expression of nuclear receptors and drug-metabolizing enzymes in adult and offspring mice. Acta Pharm Sin B. 2020. https://doi.org/10.1016/j.apsb.2019.10.009 .
doi: 10.1016/j.apsb.2019.10.009
pubmed: 34729317
pmcid: 8148056
Tuisku J, Plavén-Sigray P, Gaiser EC, et al. Effects of age, BMI and sex on the glial cell marker TSPO - a multicentre [
doi: 10.1007/s00259-019-04403-7
pubmed: 31713656
pmcid: 6974527
Hirvonen J, Roivainen A, Virta J, et al. Human biodistribution and radiation dosimetry of 11C-(R)-PK11195, the prototypic PET ligand to image inflammation. Eur J Nucl Med Mol Imaging. 2010. https://doi.org/10.1007/s00259-009-1298-3 .
doi: 10.1007/s00259-009-1298-3
pubmed: 20358196
pmcid: 2893014
Foss CA, Plyku D, Ordonez AA, et al. Biodistribution and Radiation Dosimetry of
doi: 10.2967/jnumed.117.207431
pubmed: 29700124
pmcid: 6225541
Sakata M, Ishibashi K, Imai M, et al. Assessment of safety, efficacy, and dosimetry of a novel 18-kDa translocator protein ligand, [
doi: 10.1186/s13550-017-0271-6
Brown AK, Fujita M, Fujimura Y, et al. Radiation dosimetry and biodistribution in monkey and man of 11C-PBR28: a PET radioligand to image inflammation. J Nucl Med. 2007. https://doi.org/10.2967/jnumed.107.044842 .
doi: 10.2967/jnumed.107.044842
pubmed: 18006619
Fujimura Y, Kimura Y, Siméon FG, et al. Biodistribution and radiation dosimetry in humans of a new PET ligand, (18)F-PBR06, to image translocator protein (18 kDa). J Nucl Med. 2010. https://doi.org/10.2967/jnumed.109.068064 .
doi: 10.2967/jnumed.109.068064
pubmed: 20008980
Brody AL, Okita K, Shieh J, et al. Radiation dosimetry and biodistribution of the translocator protein radiotracer [(11)C]DAA1106 determined with PET/CT in healthy human volunteers. Nucl Med Biol. 2014. https://doi.org/10.1016/j.nucmedbio.2014.07.004 .
doi: 10.1016/j.nucmedbio.2014.07.004
pubmed: 25156039
pmcid: 4192057
Kreisl WC, Fujita M, Fujimura Y, et al. Comparison of [(11)C]-(R)-PK 11195 and [(11)C]PBR28, two radioligands for translocator protein (18 kDa) in human and monkey: Implications for positron emission tomographic imaging of this inflammation biomarker. Neuroimage. 2010. https://doi.org/10.1016/j.neuroimage.2009.11.056 .
doi: 10.1016/j.neuroimage.2009.11.056
pubmed: 19948230