Elucidation of novel compounds and epitope-based peptide vaccine design against C30 endopeptidase regions of SARS-CoV-2 using immunoinformatics approaches.
3CL pro
C30 endopeptidase
CTL epitopes
SARS-CoV-2
computational immunology
immunoinformatics
peptide-based vaccine
Journal
Frontiers in cellular and infection microbiology
ISSN: 2235-2988
Titre abrégé: Front Cell Infect Microbiol
Pays: Switzerland
ID NLM: 101585359
Informations de publication
Date de publication:
2023
2023
Historique:
received:
30
12
2022
accepted:
29
04
2023
medline:
12
6
2023
pubmed:
9
6
2023
entrez:
9
6
2023
Statut:
epublish
Résumé
There has been progressive improvement in immunoinformatics approaches for epitope-based peptide design. Computational-based immune-informatics approaches were applied to identify the epitopes of SARS-CoV-2 to develop vaccines. The accessibility of the SARS-CoV-2 protein surface was analyzed, and hexa-peptide sequences (KTPKYK) were observed having a maximum score of 8.254, located between amino acids 97 and 102, whereas the FSVLAC at amino acids 112 to 117 showed the lowest score of 0.114. The surface flexibility of the target protein ranged from 0.864 to 1.099 having amino acid ranges of 159 to 165 and 118 to 124, respectively, harboring the FCYMHHM and YNGSPSG hepta-peptide sequences. The surface flexibility was predicted, and a 0.864 score was observed from amino acids 159 to 165 with the hepta-peptide (FCYMHHM) sequence. Moreover, the highest score of 1.099 was observed between amino acids 118 and 124 against YNGSPSG. B-cell epitopes and cytotoxic T-lymphocyte (CTL) epitopes were also identified against SARS-CoV-2. In molecular docking analyses, -0.54 to -26.21 kcal/mol global energy was observed against the selected CTL epitopes, exhibiting binding solid energies of -3.33 to -26.36 kcal/mol. Based on optimization, eight epitopes (SEDMLNPNY, GSVGFNIDY, LLEDEFTPF, DYDCVSFCY, GTDLEGNFY, QTFSVLACY, TVNVLAWLY, and TANPKTPKY) showed reliable findings. The study calculated the associated HLA alleles with MHC-I and MHC-II and found that MHC-I epitopes had higher population coverage (0.9019% and 0.5639%) than MHC-II epitopes, which ranged from 58.49% to 34.71% in Italy and China, respectively. The CTL epitopes were docked with antigenic sites and analyzed with MHC-I HLA protein. In addition, virtual screening was conducted using the ZINC database library, which contained 3,447 compounds. The 10 top-ranked scrutinized molecules (ZINC222731806, ZINC077293241, ZINC014880001, ZINC003830427, ZINC030731133, ZINC003932831, ZINC003816514, ZINC004245650, ZINC000057255, and ZINC011592639) exhibited the least binding energy (-8.8 to -7.5 kcal/mol). The molecular dynamics (MD) and immune simulation data suggest that these epitopes could be used to design an effective SARS-CoV-2 vaccine in the form of a peptide-based vaccine. Our identified CTL epitopes have the potential to inhibit SARS-CoV-2 replication.
Identifiants
pubmed: 37293206
doi: 10.3389/fcimb.2023.1134802
pmc: PMC10244718
doi:
Substances chimiques
COVID-19 Vaccines
0
Viral Vaccines
0
Epitopes, T-Lymphocyte
0
Epitopes, B-Lymphocyte
0
Peptides
0
Vaccines, Subunit
0
Amino Acids
0
Endopeptidases
EC 3.4.-
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1134802Informations de copyright
Copyright © 2023 Marriam, Afghan, Nadeem, Sajid, Ahsan, Basit, Wajid, Sabri, Sajid, Zafar, Rashid, Sehgal, Alkhalifah, Hozzein, Chen and Sharma.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Brief Bioinform. 2002 Sep;3(3):275-84
pubmed: 12230036
J Comput Chem. 2004 Oct;25(13):1605-12
pubmed: 15264254
Biomed Res Int. 2021 Feb 26;2021:1596834
pubmed: 33728324
Bull Natl Res Cent. 2022;46(1):170
pubmed: 35729950
PLoS One. 2020 Dec 22;15(12):e0244176
pubmed: 33351863
Nucleic Acids Res. 2021 Jul 2;49(W1):W5-W14
pubmed: 33893803
Protein Eng. 1995 Feb;8(2):127-34
pubmed: 7630882
Ann Rheum Dis. 2021 Jun;80(6):685-688
pubmed: 33853826
Science. 2020 Jun 19;368(6497):1331-1335
pubmed: 32321856
Int J Mol Sci. 2022 Mar 06;23(5):
pubmed: 35270013
Virology. 2018 Apr;517:98-107
pubmed: 29277291
Annu Rev Med. 2017 Jan 14;68:387-399
pubmed: 27576010
Methods Mol Biol. 2015;1263:243-50
pubmed: 25618350
Vaccines (Basel). 2022 Apr 28;10(5):
pubmed: 35632446
Curr Top Microbiol Immunol. 2018;419:1-42
pubmed: 28643204
Microb Cell Fact. 2022 Oct 5;21(1):203
pubmed: 36199085
Proteins. 2007 Nov 1;69(2):394-408
pubmed: 17600832
Nucleic Acids Res. 2023 Jan 6;51(D1):D523-D531
pubmed: 36408920
N Engl J Med. 2020 Apr 30;382(18):1708-1720
pubmed: 32109013
Cell Host Microbe. 2012 Jun 14;11(6):607-16
pubmed: 22704621
J Chem Inf Model. 2010 Jun 28;50(6):1034-41
pubmed: 20578727
J Biomol Struct Dyn. 2020 May;38(8):2422-2439
pubmed: 31208300
J Med Virol. 2020 Apr;92(4):401-402
pubmed: 31950516
IEEE Int Conf Comput Adv Bio Med Sci. 2011 Feb;2011:13-18
pubmed: 27818847
Vaccines (Basel). 2015 Mar 24;3(2):203-20
pubmed: 26343185
BMC Bioinformatics. 2007 Oct 31;8:424
pubmed: 17973982
F1000Res. 2020 Feb 21;9:129
pubmed: 32194944
Bioinformatics. 2005 Apr 1;21(7):1028-36
pubmed: 15546935
Nucleic Acids Res. 2016 Jul 8;44(W1):W449-54
pubmed: 27131374
Comput Biol Chem. 2023 Jun;104:107855
pubmed: 37023640
Front Mol Biosci. 2020 Oct 15;7:227
pubmed: 33195402
Med. 2021 Jan 15;2(1):99-112.e7
pubmed: 32838362
Lancet Infect Dis. 2020 Mar;20(3):279-280
pubmed: 32057299
J Phys Chem B. 2020 Dec 17;124(50):11349-11356
pubmed: 33264018
MedComm (2020). 2022 Jul 14;3(3):e151
pubmed: 35845352
Nat Struct Mol Biol. 2006 Aug;13(8):751-2
pubmed: 16845391
EMBO J. 2021 Sep 1;40(17):e107776
pubmed: 34232536
Euro Surveill. 2017 Mar 30;22(13):
pubmed: 28382917
Trends Biotechnol. 2011 May;29(5):231-9
pubmed: 21316780
J Chem Inf Model. 2005 Jan-Feb;45(1):177-82
pubmed: 15667143
J Comput Biol. 2011 Aug;18(8):997-1005
pubmed: 21702691
Nat Struct Mol Biol. 2020 Oct;27(10):959-966
pubmed: 32908316
BMC Bioinformatics. 2003 Oct 10;4:47
pubmed: 14552658
Nucleic Acids Res. 2019 Jan 8;47(D1):D339-D343
pubmed: 30357391
Antibodies (Basel). 2021 Apr 17;10(2):
pubmed: 33920596
Lancet. 2020 Feb 15;395(10223):497-506
pubmed: 31986264
Curr Protoc Bioinformatics. 2014 Dec 12;48:3.13.1-3.13.16
pubmed: 25501942
J Infect Public Health. 2022 Aug;15(8):878-891
pubmed: 35839568
Bioinformatics. 2014 Mar 15;30(6):846-51
pubmed: 24167156
Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W229-32
pubmed: 18424796
Proc Biol Sci. 2023 Oct 25;290(2009):20231284
pubmed: 37848057
Immunity. 2005 Jul;23(1):29-40
pubmed: 16039577
J Theor Biol. 2018 Dec 14;459:162-170
pubmed: 30291844
Nature. 2020 Jun;582(7811):289-293
pubmed: 32272481
R Soc Open Sci. 2019 Jul 31;6(7):190907
pubmed: 31417766
Avicenna J Med Biotechnol. 2022 Jan-Mar;14(1):30-36
pubmed: 35509358
J Virol Methods. 2021 Feb;288:114030
pubmed: 33275927
J Biomol Struct Dyn. 2020 Oct;38(16):4850-4867
pubmed: 31709929
Vaccines (Basel). 2023 Feb 23;11(3):
pubmed: 36992108
Nat Rev Drug Discov. 2007 May;6(5):404-14
pubmed: 17473845
Biochemistry. 1986 Sep 23;25(19):5425-32
pubmed: 2430611
Struct Chem. 2022;33(5):1529-1541
pubmed: 35345416
Methods Mol Biol. 2000;132:47-69
pubmed: 10547831
J Biomol Struct Dyn. 2023 Mar 19;:1-16
pubmed: 36935104
PLoS One. 2022 Mar 24;17(3):e0264700
pubmed: 35324925
BMC Bioinformatics. 2008 Dec 02;9:514
pubmed: 19055730
Nucleic Acids Res. 2018 Jan 4;46(D1):D41-D47
pubmed: 29140468
PLoS One. 2010 Apr 16;5(4):e9862
pubmed: 20419125
Nature. 2020 Oct;586(7827):113-119
pubmed: 32707573
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W363-7
pubmed: 15980490
Drug Discov Today. 2007 May;12(9-10):389-95
pubmed: 17467575