Anthracene-Porphyrin Nanoribbons.

Graphene Nanoribbons Metal Exchange NIR Absorption Nanostructures Porphyrinoids

Journal

Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543

Informations de publication

Date de publication:
01 Aug 2023
Historique:
received: 19 05 2023
medline: 9 6 2023
pubmed: 9 6 2023
entrez: 9 6 2023
Statut: ppublish

Résumé

π-Conjugated nanoribbons attract interest because of their unusual electronic structures and charge-transport behavior. Here, we report the synthesis of a series of fully edge-fused porphyrin-anthracene oligomeric ribbons (dimer and trimer), together with a computational study of the corresponding infinite polymer. The porphyrin dimer and trimer were synthesized in high yield, via oxidative cyclodehydrogenation of singly linked precursors, using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and trifluoromethanesulfonic acid (TfOH). The crystal structure of the dimer shows that the central π-system is flat, with a slight S-shaped wave distortion at each porphyrin terminal. The extended π-conjugation causes a dramatic red-shift in the absorption spectra: the absorption maxima of the fused dimer and trimer appear at 1188 nm and 1642 nm, respectively (for the nickel complexes dissolved in toluene). The coordinated metal in the dimer was changed from Ni to Mg, using p-tolylmagnesium bromide, providing access to free-base and Zn complexes. These results open a versatile avenue to longer π-conjugated nanoribbons with integrated metalloporphyrin units.

Identifiants

pubmed: 37293835
doi: 10.1002/anie.202307035
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202307035

Subventions

Organisme : H2020 European Research Council
ID : grant 885606 ARO-MAT
Organisme : FP7 People: Marie-Curie Actions
ID : 101064401 ElDelPath
Organisme : Deutsche Forschungsgemeinschaft
ID : CH 2577/1-1

Informations de copyright

© 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.

Références

V. Saraswat, R. M. Jacobberger, M. S. Arnold, ACS Nano 2021, 15, 3674-3708.
R. S. K. Houtsma, J. de la Rie, M. Stöhr, Chem. Soc. Rev. 2021, 50, 6541-6568.
 
P. Ruffieux, J. Cai, N. C. Plumb, L. Patthey, D. Prezzi, A. Ferretti, E. Molinari, X. Feng, K. Müllen, C. A. Pignedoli, R. Fasel, ACS Nano 2012, 6, 6930-6935;
S. Linden, D. Zhong, A. Timmer, N. Aghdassi, J. H. Franke, H. Zhang, X. Feng, K. Müllen, H. Fuchs, L. Chi, H. Zacharias, Phys. Rev. Lett. 2012, 108, 216801.
Geometries were optimized using PBE-D2; this was followed by a single-point calculation using the HSE06 short-range screened hybrid functional, which has 25 % exact exchange in the short range and 0 % in the long range. Band structures were obtained by interpolating HSE06 results using Boltztrap2. Band energies are reported with respect to the vacuum reference. See Supporting Information for details.
A. Borissov, Y. K. Maurya, L. Moshniaha, W.-S. Wong, M. Żyła-Karwowska, M. Stępien, Chem. Rev. 2022, 122, 565-788.
 
S. Kawai, S. Nakatsuka, T. Hatakeyama, R. Pawlak, T. Meier, J. Tracey, E. Meyer, A. S. Foster, Sci. Adv. 2018, 4, eaar7181;
J. Cai, C. A. Pignedoli, L. Talirz, P. Ruffieux, H. Söde, L. Liang, V. Meunier, R. Berger, R. Li, X. Feng, K. Müllen, R. Fasel, Nat. Nanotechnol. 2014, 9, 896-900;
E. C. H. Wen, P. H. Jacobse, J. Jiang, Z. Wang, R. D. McCurdy, S. G. Louie, M. F. Crommie, F. R. Fischer, J. Am. Chem. Soc. 2022, 144, 13696-13703;
F. Hernández-Culebras, M. Melle-Franco, A. Mateo-Alonso, Angew. Chem. Int. Ed. 2022, 61, e202205018.
 
A. Narita, X.-Y. Wang, X. Feng, K. Müllen, Chem. Soc. Rev. 2015, 44, 6616-6643;
M. Liu, M. Liu, L. She, Z. Zha, J. Pan, S. Li, T. Li, Y. He, Z. Cai, J. Wang, Y. Zheng, X. Qiu, D. Zhong, Nat. Commun. 2017, 8, 14924;
J. Lee, A. J. Kalin, T. Yuan, M. Al-Hashimi, L. Fang, Chem. Sci. 2017, 8, 2503-2521;
S. R. Bheemireddy, M. P. Hautzinger, T. Li, B. Lee, K. N. Plunkett, J. Am. Chem. Soc. 2017, 139, 5801-5807.
 
A. Tsuda, A. Osuka, Science 2001, 293, 79-82;
T. Ikeda, N. Aratani, A. Osuka, Chem. Asian J. 2009, 4, 1248-1256.
E. Leary, B. Limburg, A. Alanazy, S. Sangtarash, I. Grace, K. Swada, L. J. Esdaile, M. Noori, M. T. González, G. Rubio-Bollinger, H. Sadeghi, A. Hodgson, N. Agraït, S. J. Higgins, C. J. Lambert, H. L. Anderson, R. J. Nichols, J. Am. Chem. Soc. 2018, 140, 12877-12883.
The presence of the nickel(II) cation in PN significantly increases the band gap, compared with the corresponding zinc(II) complex; V. Posligua, A. Aziz, R. Haver, M. D. Peeks, H. L. Anderson, R. Grau-Crespo, J. Phys. Chem. C 2018, 122, 23790-23798. The smaller band gap of the zinc complex appears to be a consequence of its full d(x2-y2) orbitals, which elevate the energy of the valence band.
 
M. Jurow, A. E. Schuckman, J. D. Batteas, C. M. Drain, Coord. Chem. Rev. 2010, 254, 2297-2310;
M. Urbani, M. Grätzel, M. K. Nazeeruddin, T. Torres, Chem. Rev. 2014, 114, 12330-12396;
T. Tanaka, A. Osuka, Chem. Soc. Rev. 2015, 44, 943-969.
 
A. N. Cammidge, P. J. Scaife, G. Berber, D. L. Hughes, Org. Lett. 2005, 7, 3413-3416;
M. Tanaka, S. Hayashi, S. Eu, T. Umeyama, Y. Matano, H. Imahori, Chem. Commun. 2007, 2069-2071.
 
N. K. S. Davis, M. Pawlicki, H. L. Anderson, Org. Lett. 2008, 10, 3945-3947;
N. K. S. Davis, A. L. Thompson, H. L. Anderson, Org. Lett. 2010, 12, 2124-2127;
N. K. S. Davis, A. L. Thompson, H. L. Anderson, J. Am. Chem. Soc. 2011, 133, 30-31.
P. Zhang, C. Yu, Y. Yin, J. Droste, S. Klabunde, M. R. Hansen, Y. Mai, Chem. Eur. J. 2020, 26, 16497-16503.
O. Yamane, K. I. Sugiura, H. Miyasaka, K. Nakamura, T. Fujimoto, K. Nakamura, T. Kaneda, Y. Sakata, M. Yamashita, Chem. Lett. 2004, 33, 40-41.
 
C. Jiao, K.-W. Huang, Z. Guan, Q.-H. Xu, J. Wu, Org. Lett. 2010, 12, 4046-4049;
C. Jiao, K.-W. Huang, C. Chi, J. Wu, J. Org. Chem. 2011, 76, 661-664.
K. Kurotobi, K. S. Kim, S. B. Noh, D. Kim, A. Osuka, Angew. Chem. Int. Ed. 2006, 45, 3944-3947.
 
Q. Chen, L. Brambilla, L. Daukiya, K. S. Mali, S. De Feyter, M. Tommasini, K. Müllen, A. Narita, Angew. Chem. Int. Ed. 2018, 57, 11233-11237;
Q. Chen, A. Lodi, H. Zhang, A. Gee, H. Wang, F. Kong, M. Clarke, M. Edmondson, J. Hart, J. O'Shea, W. Stawski, J. Baugh, A. Narita, A. Saywell, M. Bonn, K. Müllen, L. Bogani, H. L. Anderson, ChemRxiv Preprint 2023, https://doi.org/10.26434/chemrxiv-2023-ghvdb.
J. P. Lewtak, D. T. Gryko, Chem. Commun. 2012, 48, 10069-10086.
H. Mori, T. Tanaka, A. Osuka, J. Mater. Chem. C 2013, 1, 2500-2519.
 
M. Grzybowski, K. Skonieczny, H. Butenschçn, D. T. Gryko, Angew. Chem. Int. Ed. 2013, 52, 9900-9930;
Y. Zhang, H. Pun, Q. Miao, Chem. Rev. 2022, 122, 14554-14593.
 
L. Zhai, R. Shukla, R. Rathore, Org. Lett. 2009, 11, 3474-3477;
L. Zhai, R. Shukla, S. H. Wadumethrige, R. Rathore, J. Org. Chem. 2010, 75, 4748-4760.
 
J. H. Heo, T. Ikeda, J. M. Lim, N. Aratani, A. Osuka, D. Kim, J. Phys. Chem. B 2010, 114, 14528-14536;
N. Fukui, S.-K. Lee, K. Kato, D. Shimizu, T. Tanaka, S. Lee, H. Yorimitsu, D. Kim, A. Osuka, Chem. Sci. 2016, 7, 4059-4066;
M. M. Martin, C. Oleszak, F. Hampel, N. Jux, Eur. J. Org. Chem. 2020, 6758-6762.
Single-crystal X-ray diffraction data were collected at 150 K using a (Rigaku) Oxford Diffraction SuperNova diffractometer and CrysAlisPro. Structure was solved using “Superflip” [
L. Palatinus, G. Chapuis, J. Appl. Crystallogr. 2007, 40, 786) before refinement with CRYSTALS
P. Parois, R. I. Cooper, A. L. Thompson, Chem. Cent. J. 2015, 9, 30;
R. I. Cooper, A. L. Thompson, D. J. Watkin, J. Appl. Crystallogr. 2010, 43, 1100] as per the Supporting Information (CIF).
Deposition Number 2244225 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
C. J. Kingsbury, M. O. Senge, Coord. Chem. Rev. 2021, 431, 213760.
 
A. Tsuda, H. Furuta, A. Osuka, J. Am. Chem. Soc. 2001, 123, 10304-10321;
A. K. Sahoo, Y. Nakamura, N. Aratani, K. S. Kim, S. B. Noh, H. Shinokubo, D. Kim, A. Osuka, Org. Lett. 2006, 8, 4141-4144;
D. Kim, A. Osuka, J. Phys. Chem. A 2003, 107, 8791-8816.
K. Murakami, Y. Yamamoto, H. Yorimitsu, A. Osuka, Chem. Eur. J. 2013, 19, 9123-9126.

Auteurs

He Zhu (H)

Department of Chemistry, University of Oxford, Chemistry Research Laboratory, OX1 3TA, Oxford, UK.

Qiang Chen (Q)

Department of Chemistry, University of Oxford, Chemistry Research Laboratory, OX1 3TA, Oxford, UK.

Igor Rončević (I)

Department of Chemistry, University of Oxford, Chemistry Research Laboratory, OX1 3TA, Oxford, UK.
Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.

Kirsten E Christensen (KE)

Department of Chemistry, University of Oxford, Chemistry Research Laboratory, OX1 3TA, Oxford, UK.

Harry L Anderson (HL)

Department of Chemistry, University of Oxford, Chemistry Research Laboratory, OX1 3TA, Oxford, UK.

Classifications MeSH