Anthracene-Porphyrin Nanoribbons.
Graphene Nanoribbons
Metal Exchange
NIR Absorption
Nanostructures
Porphyrinoids
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
01 Aug 2023
01 Aug 2023
Historique:
received:
19
05
2023
medline:
9
6
2023
pubmed:
9
6
2023
entrez:
9
6
2023
Statut:
ppublish
Résumé
π-Conjugated nanoribbons attract interest because of their unusual electronic structures and charge-transport behavior. Here, we report the synthesis of a series of fully edge-fused porphyrin-anthracene oligomeric ribbons (dimer and trimer), together with a computational study of the corresponding infinite polymer. The porphyrin dimer and trimer were synthesized in high yield, via oxidative cyclodehydrogenation of singly linked precursors, using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and trifluoromethanesulfonic acid (TfOH). The crystal structure of the dimer shows that the central π-system is flat, with a slight S-shaped wave distortion at each porphyrin terminal. The extended π-conjugation causes a dramatic red-shift in the absorption spectra: the absorption maxima of the fused dimer and trimer appear at 1188 nm and 1642 nm, respectively (for the nickel complexes dissolved in toluene). The coordinated metal in the dimer was changed from Ni to Mg, using p-tolylmagnesium bromide, providing access to free-base and Zn complexes. These results open a versatile avenue to longer π-conjugated nanoribbons with integrated metalloporphyrin units.
Identifiants
pubmed: 37293835
doi: 10.1002/anie.202307035
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202307035Subventions
Organisme : H2020 European Research Council
ID : grant 885606 ARO-MAT
Organisme : FP7 People: Marie-Curie Actions
ID : 101064401 ElDelPath
Organisme : Deutsche Forschungsgemeinschaft
ID : CH 2577/1-1
Informations de copyright
© 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
Références
V. Saraswat, R. M. Jacobberger, M. S. Arnold, ACS Nano 2021, 15, 3674-3708.
R. S. K. Houtsma, J. de la Rie, M. Stöhr, Chem. Soc. Rev. 2021, 50, 6541-6568.
P. Ruffieux, J. Cai, N. C. Plumb, L. Patthey, D. Prezzi, A. Ferretti, E. Molinari, X. Feng, K. Müllen, C. A. Pignedoli, R. Fasel, ACS Nano 2012, 6, 6930-6935;
S. Linden, D. Zhong, A. Timmer, N. Aghdassi, J. H. Franke, H. Zhang, X. Feng, K. Müllen, H. Fuchs, L. Chi, H. Zacharias, Phys. Rev. Lett. 2012, 108, 216801.
Geometries were optimized using PBE-D2; this was followed by a single-point calculation using the HSE06 short-range screened hybrid functional, which has 25 % exact exchange in the short range and 0 % in the long range. Band structures were obtained by interpolating HSE06 results using Boltztrap2. Band energies are reported with respect to the vacuum reference. See Supporting Information for details.
A. Borissov, Y. K. Maurya, L. Moshniaha, W.-S. Wong, M. Żyła-Karwowska, M. Stępien, Chem. Rev. 2022, 122, 565-788.
S. Kawai, S. Nakatsuka, T. Hatakeyama, R. Pawlak, T. Meier, J. Tracey, E. Meyer, A. S. Foster, Sci. Adv. 2018, 4, eaar7181;
J. Cai, C. A. Pignedoli, L. Talirz, P. Ruffieux, H. Söde, L. Liang, V. Meunier, R. Berger, R. Li, X. Feng, K. Müllen, R. Fasel, Nat. Nanotechnol. 2014, 9, 896-900;
E. C. H. Wen, P. H. Jacobse, J. Jiang, Z. Wang, R. D. McCurdy, S. G. Louie, M. F. Crommie, F. R. Fischer, J. Am. Chem. Soc. 2022, 144, 13696-13703;
F. Hernández-Culebras, M. Melle-Franco, A. Mateo-Alonso, Angew. Chem. Int. Ed. 2022, 61, e202205018.
A. Narita, X.-Y. Wang, X. Feng, K. Müllen, Chem. Soc. Rev. 2015, 44, 6616-6643;
M. Liu, M. Liu, L. She, Z. Zha, J. Pan, S. Li, T. Li, Y. He, Z. Cai, J. Wang, Y. Zheng, X. Qiu, D. Zhong, Nat. Commun. 2017, 8, 14924;
J. Lee, A. J. Kalin, T. Yuan, M. Al-Hashimi, L. Fang, Chem. Sci. 2017, 8, 2503-2521;
S. R. Bheemireddy, M. P. Hautzinger, T. Li, B. Lee, K. N. Plunkett, J. Am. Chem. Soc. 2017, 139, 5801-5807.
A. Tsuda, A. Osuka, Science 2001, 293, 79-82;
T. Ikeda, N. Aratani, A. Osuka, Chem. Asian J. 2009, 4, 1248-1256.
E. Leary, B. Limburg, A. Alanazy, S. Sangtarash, I. Grace, K. Swada, L. J. Esdaile, M. Noori, M. T. González, G. Rubio-Bollinger, H. Sadeghi, A. Hodgson, N. Agraït, S. J. Higgins, C. J. Lambert, H. L. Anderson, R. J. Nichols, J. Am. Chem. Soc. 2018, 140, 12877-12883.
The presence of the nickel(II) cation in PN significantly increases the band gap, compared with the corresponding zinc(II) complex; V. Posligua, A. Aziz, R. Haver, M. D. Peeks, H. L. Anderson, R. Grau-Crespo, J. Phys. Chem. C 2018, 122, 23790-23798. The smaller band gap of the zinc complex appears to be a consequence of its full d(x2-y2) orbitals, which elevate the energy of the valence band.
M. Jurow, A. E. Schuckman, J. D. Batteas, C. M. Drain, Coord. Chem. Rev. 2010, 254, 2297-2310;
M. Urbani, M. Grätzel, M. K. Nazeeruddin, T. Torres, Chem. Rev. 2014, 114, 12330-12396;
T. Tanaka, A. Osuka, Chem. Soc. Rev. 2015, 44, 943-969.
A. N. Cammidge, P. J. Scaife, G. Berber, D. L. Hughes, Org. Lett. 2005, 7, 3413-3416;
M. Tanaka, S. Hayashi, S. Eu, T. Umeyama, Y. Matano, H. Imahori, Chem. Commun. 2007, 2069-2071.
N. K. S. Davis, M. Pawlicki, H. L. Anderson, Org. Lett. 2008, 10, 3945-3947;
N. K. S. Davis, A. L. Thompson, H. L. Anderson, Org. Lett. 2010, 12, 2124-2127;
N. K. S. Davis, A. L. Thompson, H. L. Anderson, J. Am. Chem. Soc. 2011, 133, 30-31.
P. Zhang, C. Yu, Y. Yin, J. Droste, S. Klabunde, M. R. Hansen, Y. Mai, Chem. Eur. J. 2020, 26, 16497-16503.
O. Yamane, K. I. Sugiura, H. Miyasaka, K. Nakamura, T. Fujimoto, K. Nakamura, T. Kaneda, Y. Sakata, M. Yamashita, Chem. Lett. 2004, 33, 40-41.
C. Jiao, K.-W. Huang, Z. Guan, Q.-H. Xu, J. Wu, Org. Lett. 2010, 12, 4046-4049;
C. Jiao, K.-W. Huang, C. Chi, J. Wu, J. Org. Chem. 2011, 76, 661-664.
K. Kurotobi, K. S. Kim, S. B. Noh, D. Kim, A. Osuka, Angew. Chem. Int. Ed. 2006, 45, 3944-3947.
Q. Chen, L. Brambilla, L. Daukiya, K. S. Mali, S. De Feyter, M. Tommasini, K. Müllen, A. Narita, Angew. Chem. Int. Ed. 2018, 57, 11233-11237;
Q. Chen, A. Lodi, H. Zhang, A. Gee, H. Wang, F. Kong, M. Clarke, M. Edmondson, J. Hart, J. O'Shea, W. Stawski, J. Baugh, A. Narita, A. Saywell, M. Bonn, K. Müllen, L. Bogani, H. L. Anderson, ChemRxiv Preprint 2023, https://doi.org/10.26434/chemrxiv-2023-ghvdb.
J. P. Lewtak, D. T. Gryko, Chem. Commun. 2012, 48, 10069-10086.
H. Mori, T. Tanaka, A. Osuka, J. Mater. Chem. C 2013, 1, 2500-2519.
M. Grzybowski, K. Skonieczny, H. Butenschçn, D. T. Gryko, Angew. Chem. Int. Ed. 2013, 52, 9900-9930;
Y. Zhang, H. Pun, Q. Miao, Chem. Rev. 2022, 122, 14554-14593.
L. Zhai, R. Shukla, R. Rathore, Org. Lett. 2009, 11, 3474-3477;
L. Zhai, R. Shukla, S. H. Wadumethrige, R. Rathore, J. Org. Chem. 2010, 75, 4748-4760.
J. H. Heo, T. Ikeda, J. M. Lim, N. Aratani, A. Osuka, D. Kim, J. Phys. Chem. B 2010, 114, 14528-14536;
N. Fukui, S.-K. Lee, K. Kato, D. Shimizu, T. Tanaka, S. Lee, H. Yorimitsu, D. Kim, A. Osuka, Chem. Sci. 2016, 7, 4059-4066;
M. M. Martin, C. Oleszak, F. Hampel, N. Jux, Eur. J. Org. Chem. 2020, 6758-6762.
Single-crystal X-ray diffraction data were collected at 150 K using a (Rigaku) Oxford Diffraction SuperNova diffractometer and CrysAlisPro. Structure was solved using “Superflip” [
L. Palatinus, G. Chapuis, J. Appl. Crystallogr. 2007, 40, 786) before refinement with CRYSTALS
P. Parois, R. I. Cooper, A. L. Thompson, Chem. Cent. J. 2015, 9, 30;
R. I. Cooper, A. L. Thompson, D. J. Watkin, J. Appl. Crystallogr. 2010, 43, 1100] as per the Supporting Information (CIF).
Deposition Number 2244225 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
C. J. Kingsbury, M. O. Senge, Coord. Chem. Rev. 2021, 431, 213760.
A. Tsuda, H. Furuta, A. Osuka, J. Am. Chem. Soc. 2001, 123, 10304-10321;
A. K. Sahoo, Y. Nakamura, N. Aratani, K. S. Kim, S. B. Noh, H. Shinokubo, D. Kim, A. Osuka, Org. Lett. 2006, 8, 4141-4144;
D. Kim, A. Osuka, J. Phys. Chem. A 2003, 107, 8791-8816.
K. Murakami, Y. Yamamoto, H. Yorimitsu, A. Osuka, Chem. Eur. J. 2013, 19, 9123-9126.