The role of apoptosis in the pathogenesis of osteoarthritis.


Journal

International orthopaedics
ISSN: 1432-5195
Titre abrégé: Int Orthop
Pays: Germany
ID NLM: 7705431

Informations de publication

Date de publication:
Aug 2023
Historique:
received: 02 04 2022
accepted: 17 05 2023
medline: 17 7 2023
pubmed: 9 6 2023
entrez: 9 6 2023
Statut: ppublish

Résumé

Apoptosis is an important physiological process, making a great difference to development and tissue homeostasis. Osteoarthritis (OA) is a chronic joint disease characterized by degeneration and destruction of articular cartilage and bone hyperplasia. This purpose of this study is to provide an updated review of the role of apoptosis in the pathogenesis of osteoarthritis. A comprehensive review of the literature on osteoarthritis and apoptosis was performed, which mainly focused on the regulatory factors and signaling pathways associated with chondrocyte apoptosis in osteoarthritis and other pathogenic mechanisms involved in chondrocyte apoptosis. Inflammatory mediators such as reactive oxygen species (ROS), nitric oxide (NO), IL-1β, tumor necrosis factor-α (TNF-α), and Fas are closely related to chondrocyte apoptosis. NF-κB signaling pathway, Wnt signaling pathway, and Notch signaling pathway activate proteins and gene targets that promote or inhibit the progression of osteoarthritis disease, including chondrocyte apoptosis and ECM degradation. Long non-coding RNAs (LncRNAs) and microRNAs (microRNAs) have gradually replaced single and localized research methods and become the main research approaches. In addition, the relationship between cellular senescence, autophagy, and apoptosis was also briefly explained. This review offers a better molecular delineation of apoptotic processes that may help in designing new therapeutic options for OA treatment.

Identifiants

pubmed: 37294429
doi: 10.1007/s00264-023-05847-1
pii: 10.1007/s00264-023-05847-1
doi:

Substances chimiques

MicroRNAs 0
Interleukin-1beta 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

1895-1919

Subventions

Organisme : Science and Technology Support Program of Jiangsu Province
ID : BE2022801
Organisme : Government of Jiangsu Province
ID : SJCX21_0727

Informations de copyright

© 2023. The Author(s) under exclusive licence to SICOT aisbl.

Références

Liem Y, Judge A, Kirwan J, Ourradi K, Li Y, Sharif M (2020) Multivariable logistic and linear regression models for identification of clinically useful biomarkers for osteoarthritis. Sci Rep 10:11328. https://doi.org/10.1038/s41598-020-68077-0
doi: 10.1038/s41598-020-68077-0 pubmed: 32647218 pmcid: 7347626
Wallace IJ, Worthington S, Felson DT et al (2017) Knee osteoarthritis has doubled in prevalence since the mid-20th century. Proc Natl Acad Sci USA 114:9332–9336. https://doi.org/10.1073/pnas.1703856114
doi: 10.1073/pnas.1703856114 pubmed: 28808025 pmcid: 5584421
Salmon JH, Rat AC, Sellam J et al (2016) Economic impact of lower-limb osteoarthritis worldwide: a systematic review of cost-of-illness studies. Osteoarthr Cartil 24:1500–1508. https://doi.org/10.1016/j.joca.2016.03.012
doi: 10.1016/j.joca.2016.03.012
Mukherjee S, Nazemi M, Jonkers I, Geris L (2020) Use of computational modeling to study joint degeneration: a review. Front Bioeng Biotechnol 8:93. https://doi.org/10.3389/fbioe.2020.00093
doi: 10.3389/fbioe.2020.00093 pubmed: 32185167 pmcid: 7058554
Kim J-H, Jeon J, Shin M et al (2014) Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis. Cell 156:730–743. https://doi.org/10.1016/j.cell.2014.01.007
doi: 10.1016/j.cell.2014.01.007 pubmed: 24529376
Peshkova M, Lychagin A, Lipina M, Di Matteo B, Anzillotti G, Ronzoni F, Kosheleva N, Shpichka A, Royuk V, Fomin V, Kalinsky E, Timashev P, Kon E (2022) Gender-related aspects in osteoarthritis development and progression: a review. Int J Mol Sci 23(5):2767. https://doi.org/10.3390/ijms23052767
Sandell LJ, Aigner T (2001) Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res 3:107–113
doi: 10.1186/ar148 pubmed: 11178118 pmcid: 128887
Aigner T, Söder S, Gebhard PM, McAlinden A, Haag J (2007) Mechanisms of disease: role of chondrocytes in the pathogenesis of osteoarthritis—structure, chaos and senescence. Nat Clin Pract Rheumatol 3:391–399
doi: 10.1038/ncprheum0534 pubmed: 17599073
Zamli Z, Sharif M (2011) Chondrocyte apoptosis: a cause or consequence of osteoarthritis? Int J Rheum Dis 14:159–166. https://doi.org/10.1111/j.1756-185X.2011.01618.x
doi: 10.1111/j.1756-185X.2011.01618.x pubmed: 21518315
Goldring MB, Marcu KB (2009) Cartilage homeostasis in health and rheumatic diseases. Arthritis Res Ther 11:224. https://doi.org/10.1186/ar2592
doi: 10.1186/ar2592 pubmed: 19519926 pmcid: 2714092
Héraud F, Héraud A, Harmand MF (2000) Apoptosis in normal and osteoarthritic human articular cartilage. Ann Rheum Dis 59:959–965
doi: 10.1136/ard.59.12.959 pubmed: 11087699 pmcid: 1753049
Aigner T, Hemmel M, Neureiter D et al (2001) Apoptotic cell death is not a widespread phenomenon in normal aging and osteoarthritis human articular knee cartilage: a study of proliferation, programmed cell death (apoptosis), and viability of chondrocytes in normal and osteoarthritic human knee cartilage. Arthritis Rheum 44:1304–1312
doi: 10.1002/1529-0131(200106)44:6<1304::AID-ART222>3.0.CO;2-T pubmed: 11407689
Hwang HS, Kim HA (2015) Chondrocyte apoptosis in the pathogenesis of osteoarthritis. Int J Mol Sci 16:26035–26054. https://doi.org/10.3390/ijms161125943
doi: 10.3390/ijms161125943 pubmed: 26528972 pmcid: 4661802
Charlier E, Relic B, Deroyer C, Malaise O, Neuville S, Collée J, Malaise MG, De Seny D (2016) Insights on molecular mechanisms of chondrocytes death in osteoarthritis. Int J Mol Sci 17(12):2146. https://doi.org/10.3390/ijms17122146
doi: 10.3390/ijms17122146 pubmed: 27999417 pmcid: 5187946
Yang J, Hu S, Bian Y et al (2021) Targeting cell death: pyroptosis, ferroptosis, apoptosis and necroptosis in osteoarthritis. Front Cell Dev Biol 9:789948. https://doi.org/10.3389/fcell.2021.789948
doi: 10.3389/fcell.2021.789948 pubmed: 35118075
Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257. https://doi.org/10.1038/bjc.1972.33
doi: 10.1038/bjc.1972.33 pubmed: 4561027 pmcid: 2008650
Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146(1):3–15
pubmed: 7856735 pmcid: 1870771
Guicciardi ME, Gores GJ (2009) Life and death by death receptors. Faseb j 23:1625–1637. https://doi.org/10.1096/fj.08-111005
doi: 10.1096/fj.08-111005 pubmed: 19141537 pmcid: 2698650
Peng F, Liao M, Qin R et al (2022) Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther 7:286. https://doi.org/10.1038/s41392-022-01110-y
doi: 10.1038/s41392-022-01110-y pubmed: 35963853 pmcid: 9376115
Mahmood Z, Shukla Y (2010) Death receptors: targets for cancer therapy. Exp Cell Res 316:887–899. https://doi.org/10.1016/j.yexcr.2009.12.011
doi: 10.1016/j.yexcr.2009.12.011 pubmed: 20026107
Lee E-W, Seo J, Jeong M, Lee S, Song J (2012) The roles of FADD in extrinsic apoptosis and necroptosis. BMB Rep 45:496–508
doi: 10.5483/BMBRep.2012.45.9.186 pubmed: 23010170
Kretz AL, Trauzold A, Hillenbrand A, Knippschild U, Henne-Bruns D, von Karstedt S, Lemke J (2019) TRAILblazing Strategies for cancer treatment. Cancers (Basel) 11(4):456. https://doi.org/10.3390/cancers11040456
doi: 10.3390/cancers11040456 pubmed: 30935038
Cavalcante GC, Schaan AP, Cabral GF, Santana-da-Silva MN, Pinto P, Vidal AF, Ribeiro-Dos-Santos  (2019) A Cell’s fate: an overview of the molecular biology and genetics of apoptosis. Int J Mol Sci 20(17):4133. https://doi.org/10.3390/ijms20174133
doi: 10.3390/ijms20174133 pubmed: 31450613 pmcid: 6747454
Mandal R, Barron JC, Kostova I, Becker S, Strebhardt K (2020) Caspase-8: the double-edged sword. Biochim Biophys Acta Rev Cancer 1873:188357. https://doi.org/10.1016/j.bbcan.2020.188357
doi: 10.1016/j.bbcan.2020.188357 pubmed: 32147543
Hughes MA, Powley IR, Jukes-Jones R et al (2016) Co-operative and hierarchical binding of c-FLIP and caspase-8: a unified model defines how c-FLIP isoforms differentially control cell fate. Mol Cell 61:834–849. https://doi.org/10.1016/j.molcel.2016.02.023
doi: 10.1016/j.molcel.2016.02.023 pubmed: 26990987 pmcid: 4819448
Seyrek K, Ivanisenko NV, Richter M, Hillert LK, König C, Lavrik IN (2020) Controlling cell death through post-translational modifications of DED proteins. Trends Cell Biol 30:354–369. https://doi.org/10.1016/j.tcb.2020.02.006
doi: 10.1016/j.tcb.2020.02.006 pubmed: 32302548
Oh YT, Sun SY (2021) Regulation of Cancer metastasis by TRAIL/death receptor signaling. Biomolecules 11(4):499. https://doi.org/10.3390/biom11040499
doi: 10.3390/biom11040499 pubmed: 33810241 pmcid: 8065657
Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114:181–190
doi: 10.1016/S0092-8674(03)00521-X pubmed: 12887920
Griewahn L, Köser A, Maurer U (2019) Keeping cell death in check: ubiquitylation-dependent control of TNFR1 and TLR signaling. Front Cell Dev Biol 7:117. https://doi.org/10.3389/fcell.2019.00117
doi: 10.3389/fcell.2019.00117 pubmed: 31316982 pmcid: 6609852
Shalini S, Dorstyn L, Dawar S, Kumar S (2015) Old, new and emerging functions of caspases. Cell Death Differ 22:526–539. https://doi.org/10.1038/cdd.2014.216
doi: 10.1038/cdd.2014.216 pubmed: 25526085
Galluzzi L, López-Soto A, Kumar S, Kroemer G (2016) Caspases connect cell-death signaling to organismal homeostasis. Immunity 44:221–231. https://doi.org/10.1016/j.immuni.2016.01.020
doi: 10.1016/j.immuni.2016.01.020 pubmed: 26885855
Van Opdenbosch N, Lamkanfi M (2019) Caspases in cell death, inflammation, and disease. Immunity 50:1352–1364. https://doi.org/10.1016/j.immuni.2019.05.020
doi: 10.1016/j.immuni.2019.05.020 pubmed: 31216460 pmcid: 6611727
VandenBerghe T, Kaiser WJ, Bertrand MJ, Vandenabeele P (2015) Molecular crosstalk between apoptosis, necroptosis, and survival signaling. Mol Cell Oncol 2:e975093. https://doi.org/10.4161/23723556.2014.975093
doi: 10.4161/23723556.2014.975093
Estaquier J, Vallette F, Vayssiere J-L, Mignotte B (2012) The mitochondrial pathways of apoptosis. Adv Exp Med Biol 942:157–183. https://doi.org/10.1007/978-94-007-2869-1_7
doi: 10.1007/978-94-007-2869-1_7 pubmed: 22399422
Bock FJ, Tait SWG (2020) Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol 21(2):85–100. https://doi.org/10.1038/s41580-019-0173-8
doi: 10.1038/s41580-019-0173-8 pubmed: 31636403
Tait SWG, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11:621–632. https://doi.org/10.1038/nrm2952
doi: 10.1038/nrm2952 pubmed: 20683470
Bao Q, Shi Y (2007) Apoptosome: a platform for the activation of initiator caspases. Cell Death Differ 14:56–65. https://doi.org/10.1038/sj.cdd.4402028
doi: 10.1038/sj.cdd.4402028 pubmed: 16977332
Dorstyn L, Akey CW, Kumar S (2018) New insights into apoptosome structure and function. Cell Death Differ 25:1194–1208. https://doi.org/10.1038/s41418-017-0025-z
doi: 10.1038/s41418-017-0025-z pubmed: 29765111 pmcid: 6030056
Chai J, Du C, Wu JW, Kyin S, Wang X, Shi Y (2000) Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406:855–862
doi: 10.1038/35022514 pubmed: 10972280
Lv Z, Song X, Xu J et al (2019) The modulation of Smac/DIABLO on mitochondrial apoptosis induced by LPS in Crassostrea gigas. Fish Shellfish Immunol 84:587-598. https://doi.org/10.1016/j.fsi.2018.10.035
Wiehe RS, Gole B, Chatre L et al (2018) Correction: Endonuclease G promotes mitochondrial genome cleavage and replication. Oncotarget 9:27908. https://doi.org/10.18632/oncotarget.25645
Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99
doi: 10.1038/35083620 pubmed: 11452314
Frezza C, Cipolat S, Martins de Brito O et al (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126:177–189
doi: 10.1016/j.cell.2006.06.025 pubmed: 16839885
Olichon A, Baricault L, Gas N et al (2003) Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 278:7743–7746
doi: 10.1074/jbc.C200677200 pubmed: 12509422
Quarato G, Llambi F, Guy CS et al (2022) Ca-mediated mitochondrial inner membrane permeabilization induces cell death independently of Bax and Bak. Cell Death Differ 29:1318–1334. https://doi.org/10.1038/s41418-022-01025-9
doi: 10.1038/s41418-022-01025-9 pubmed: 35726022 pmcid: 9287385
Ramirez MLG, Salvesen GS (2018) A primer on caspase mechanisms. Semin Cell Dev Biol 82:79–85. https://doi.org/10.1016/j.semcdb.2018.01.002
doi: 10.1016/j.semcdb.2018.01.002 pubmed: 29329946 pmcid: 6043420
Kesavardhana S, Malireddi RKS, Kanneganti T-D (2020) Caspases in cell death, inflammation, and pyroptosis. Annu Rev Immunol 38:567–595. https://doi.org/10.1146/annurev-immunol-073119-095439
doi: 10.1146/annurev-immunol-073119-095439 pubmed: 32017655 pmcid: 7190443
Kumar S, Dorstyn L, Lim Y (2022) The role of caspases as executioners of apoptosis. Biochem Soc Trans 50:33–45. https://doi.org/10.1042/BST20210751
doi: 10.1042/BST20210751 pubmed: 34940803
Chowdhury I, Tharakan B, Bhat GK (2008) Caspases — an update. Comp Biochem Physiol B Biochem Mol Biol 151:10–27. https://doi.org/10.1016/j.cbpb.2008.05.010
doi: 10.1016/j.cbpb.2008.05.010 pubmed: 18602321
Mishra R, Das MK, Singh S, Sharma RS, Sharma S, Mishra V (2017) Articulatin-D induces apoptosis via activation of caspase-8 in acute T-cell leukemia cell line. Mol Cell Biochem 426:87–99. https://doi.org/10.1007/s11010-016-2883-y
doi: 10.1007/s11010-016-2883-y pubmed: 27868169
Nicholson DW (1999) Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 6:1028–1042. https://doi.org/10.1038/sj.cdd.4400598
doi: 10.1038/sj.cdd.4400598 pubmed: 10578171
Henry CM, Martin SJ (2017) Caspase-8 acts in a non-enzymatic role as a scaffold for assembly of a pro-inflammatory “FADDosome” complex upon TRAIL stimulation. Mol Cell 65(4):715–729.e5. https://doi.org/10.1016/j.molcel.2017.01.022
doi: 10.1016/j.molcel.2017.01.022 pubmed: 28212752
Oberst A, Dillon CP, Weinlich R et al (2011) Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471:363–367. https://doi.org/10.1038/nature09852
doi: 10.1038/nature09852 pubmed: 21368763 pmcid: 3077893
Flores-Romero H, García-Sáez AJ (2019) The incomplete puzzle of the BCL2 proteins. Cells 8(10):1176. https://doi.org/10.3390/cells8101176
doi: 10.3390/cells8101176 pubmed: 31569576 pmcid: 6830314
Tait SWG, Oberst A, Quarato G et al (2013) Widespread mitochondrial depletion via mitophagy does not compromise necroptosis. Cell Rep 5:878–885. https://doi.org/10.1016/j.celrep.2013.10.034
doi: 10.1016/j.celrep.2013.10.034 pubmed: 24268776 pmcid: 4005921
Kale J, Osterlund EJ, Andrews DW (2018) BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ 25:65–80. https://doi.org/10.1038/cdd.2017.186
doi: 10.1038/cdd.2017.186 pubmed: 29149100
Siddiqui WA, Ahad A, Ahsan H (2015) The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. Arch Toxicol 89:289–317. https://doi.org/10.1007/s00204-014-1448-7
doi: 10.1007/s00204-014-1448-7 pubmed: 25618543
Tsujimoto Y (1998) Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes Cells 3:697–707. https://doi.org/10.1046/j.1365-2443.1998.00223.x
doi: 10.1046/j.1365-2443.1998.00223.x pubmed: 9990505
Popgeorgiev N, Sa JD, Jabbour L, Banjara S, Nguyen TTM, Akhavan-E-Sabet A, Gadet R, Ralchev N, Manon S, Hinds MG, Osigus HJ, Schierwater B, Humbert PO, Rimokh R, Gillet G, Kvansakul M (2020) Ancient and conserved functional interplay between Bcl-2 family proteins in the mitochondrial pathway of apoptosis. Sci Adv 6(40):eabc4149. https://doi.org/10.1126/sciadv.abc4149
doi: 10.1126/sciadv.abc4149 pubmed: 32998881 pmcid: 7527217
Huang K, O’Neill KL, Li J et al (2019) BH3-only proteins target BCL-xL/MCL-1, not BAX/BAK, to initiate apoptosis. Cell Res 29:942–952. https://doi.org/10.1038/s41422-019-0231-y
doi: 10.1038/s41422-019-0231-y pubmed: 31551537 pmcid: 6888900
Flores-Romero H, Hohorst L, John M et al (2022) BCL-2-family protein tBID can act as a BAX-like effector of apoptosis. EMBO J 41:e108690. https://doi.org/10.15252/embj.2021108690
Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501
doi: 10.1016/S0092-8674(00)81590-1 pubmed: 9727492
Kantari C, Walczak H (2011) Caspase-8 and bid: caught in the act between death receptors and mitochondria. Biochem Biophys Acta 1813:558–563. https://doi.org/10.1016/j.bbamcr.2011.01.026
doi: 10.1016/j.bbamcr.2011.01.026 pubmed: 21295084
Ke FS, Holloway S, Uren RT et al (2022) The BCL-2 family member BID plays a role during embryonic development in addition to its BH3-only protein function by acting in parallel to BAX, BAK and BOK. EMBO J 41:e110300. https://doi.org/10.15252/embj.2021110300
Delbridge AR, Grabow S, Strasser A, Vaux DL (2016) Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nat Rev Cancer 16:99–109. https://doi.org/10.1038/nrc.2015.17
doi: 10.1038/nrc.2015.17 pubmed: 26822577
Ramesh P, Medema JP (2020) BCL-2 family deregulation in colorectal cancer: potential for BH3 mimetics in therapy. Apoptosis Int J Program Cell Death 25:305–320. https://doi.org/10.1007/s10495-020-01601-9
doi: 10.1007/s10495-020-01601-9
Diepstraten ST, Anderson MA, Czabotar PE, Lessene G, Strasser A, Kelly GL (2022) The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat Rev Cancer 22:45–64. https://doi.org/10.1038/s41568-021-00407-4
doi: 10.1038/s41568-021-00407-4 pubmed: 34663943
Klanova M, Klener P (2020) BCL-2 proteins in pathogenesis and therapy of B-Cell non-hodgkin lymphomas. Cancers (Basel) 12(4):938. https://doi.org/10.3390/cancers12040938
doi: 10.3390/cancers12040938 pubmed: 32290241
Lessene G, Czabotar PE, Sleebs BE et al (2013) Structure-guided design of a selective BCL-X(L) inhibitor. Nat Chem Biol 9:390–397. https://doi.org/10.1038/nchembio.1246
doi: 10.1038/nchembio.1246 pubmed: 23603658
Blombery P, Anderson MA, Gong JN et al (2019) Acquisition of the recurrent Gly101Val mutation in BCL2 confers resistance to Venetoclax in patients with progressive chronic lymphocytic leukemia. Cancer Discov 9:342–353. https://doi.org/10.1158/2159-8290.Cd-18-1119
doi: 10.1158/2159-8290.Cd-18-1119 pubmed: 30514704
Kotschy A, Szlavik Z, Murray J et al (2016) The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature 538:477–482. https://doi.org/10.1038/nature19830
doi: 10.1038/nature19830 pubmed: 27760111
Caenepeel S, Brown SP, Belmontes B et al (2018) AMG 176, a selective MCL1 inhibitor, is effective in hematologic cancer models alone and in combination with established therapies. Cancer Discov 8:1582–1597. https://doi.org/10.1158/2159-8290.CD-18-0387
doi: 10.1158/2159-8290.CD-18-0387 pubmed: 30254093
Tron AE, Belmonte MA, Adam A et al (2018) Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nat Commun 9:5341. https://doi.org/10.1038/s41467-018-07551-w
doi: 10.1038/s41467-018-07551-w pubmed: 30559424 pmcid: 6297231
Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H (2011) Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol 7:33–42. https://doi.org/10.1038/nrrheum.2010.196
doi: 10.1038/nrrheum.2010.196 pubmed: 21119608
Wojdasiewicz P, Poniatowski LA, Szukiewicz D (2014) The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediat Inflamm 2014:561459. https://doi.org/10.1155/2014/561459
doi: 10.1155/2014/561459
Carames B, Lopez-Armada MJ, Cillero-Pastor B et al (2008) Differential effects of tumor necrosis factor-alpha and interleukin-1beta on cell death in human articular chondrocytes. Osteoarthr Cartil 16:715–722. https://doi.org/10.1016/j.joca.2007.10.006
doi: 10.1016/j.joca.2007.10.006
López-Armada MJ, Caramés B, Lires-Deán M et al (2006) Cytokines, tumor necrosis factor-alpha and interleukin-1beta, differentially regulate apoptosis in osteoarthritis cultured human chondrocytes. Osteoarthr Cartil 14:660–669
doi: 10.1016/j.joca.2006.01.005
van Dalen SC, Blom AB, Sloetjes AW et al (2017) Interleukin-1 is not involved in synovial inflammation and cartilage destruction in collagenase-induced osteoarthritis. Osteoarthr Cartil 25:385–396. https://doi.org/10.1016/j.joca.2016.09.009
doi: 10.1016/j.joca.2016.09.009
Nasi S, Ea HK, So A, Busso N (2017) Revisiting the role of interleukin-1 pathway in osteoarthritis: interleukin-1alpha and -1beta, and NLRP3 inflammasome are not involved in the pathological features of the murine menisectomy model of osteoarthritis. Front Pharmacol 8:282. https://doi.org/10.3389/fphar.2017.00282
doi: 10.3389/fphar.2017.00282 pubmed: 28659793 pmcid: 5468399
Blanco FJ, Ochs RL, Schwarz H, Lotz M (1995) Chondrocyte apoptosis induced by nitric oxide. Am J Pathol 146:75–85
pubmed: 7856740 pmcid: 1870754
Kühn K, Shikhman AR, Lotz M (2003) Role of nitric oxide, reactive oxygen species, and p38 MAP kinase in the regulation of human chondrocyte apoptosis. J Cell Physiol 197:379–387
doi: 10.1002/jcp.10372 pubmed: 14566967
Relic B, Bentires-Alj M, Ribbens C et al (2002) TNF-alpha protects human primary articular chondrocytes from nitric oxide-induced apoptosis via nuclear factor-kappaB. Lab Invest 82:1661–1672. https://doi.org/10.1097/01.lab.0000041714.05322.c0
doi: 10.1097/01.lab.0000041714.05322.c0 pubmed: 12480916
Kuhn K, Hashimoto S, Lotz M (2000) IL-1 beta protects human chondrocytes from CD95-induced apoptosis. J Immunol 164:2233–2239. https://doi.org/10.4049/jimmunol.164.4.2233
doi: 10.4049/jimmunol.164.4.2233 pubmed: 10657679
Raymond L, Eck S, Hays E, Tomek I, Kantor S, Vincenti M (2007) RelA is required for IL-1beta stimulation of Matrix Metalloproteinase-1 expression in chondrocytes. Osteoarthr Cartil 15:431–441
doi: 10.1016/j.joca.2006.09.011
Yoshimura F, Kanno H, Uzuki M, Tajima K, Shimamura T, Sawai T (2006) Downregulation of inhibitor of apoptosis proteins in apoptotic human chondrocytes treated with tumor necrosis factor-alpha and actinomycin D. Osteoarthr Cartil 14:435–441. https://doi.org/10.1016/j.joca.2005.11.003
doi: 10.1016/j.joca.2005.11.003
Ng C-P, Zisman A, Bonavida B (2002) Synergy is achieved by complementation with Apo2L/TRAIL and actinomycin D in Apo2L/TRAIL-mediated apoptosis of prostate cancer cells: role of XIAP in resistance. Prostate 53:286–299
doi: 10.1002/pros.10155 pubmed: 12430140
Jun Qin LS, Ping A-S, Li J, Li X-J, Hong Yu, Magdalou J, Chen L-B, Wang H (2012) TNF/TNFR signal transduction pathway-mediated anti-apoptosis and anti-inflammatory effects of sodium ferulate on IL-1b-induced rat osteoarthritis chondrocytes in vitro. Arthritis Res Ther 14:R242
doi: 10.1186/ar4085 pubmed: 23134577 pmcid: 3674623
Yang H, Zhang M, Wang X et al (2015) TNF accelerates death of mandibular condyle chondrocytes in rats with biomechanical stimulation-induced temporomandibular joint disease. PloS One 10:e0141774. https://doi.org/10.1371/journal.pone.0141774
doi: 10.1371/journal.pone.0141774 pubmed: 26529096 pmcid: 4631347
Zhang J, Li Q, Chang S (2019) The effects of particle density in moxa smoke on the ultrastructure of knee cartilage and expressions of TNF-alpha, IL-1b, BAX, and Bcl-2 mRNA in a rat model for osteoarthritis. J Cell Biochem 120:6589–6595. https://doi.org/10.1002/jcb.27952
doi: 10.1002/jcb.27952 pubmed: 30430645
Yan S, Wang M, Zhao J et al (2016) MicroRNA-34a affects chondrocyte apoptosis and proliferation by targeting the SIRT1/p53 signaling pathway during the pathogenesis of osteoarthritis. Int J Mol Med 38:201–209. https://doi.org/10.3892/ijmm.2016.2618
doi: 10.3892/ijmm.2016.2618 pubmed: 27247228 pmcid: 4899008
Tao H, Cheng L, Yang R (2020) Downregulation of miR-34a promotes proliferation and inhibits apoptosis of rat osteoarthritic cartilage cells by activating PI3K/Akt pathway. Clin Interv Aging 15:373–385. https://doi.org/10.2147/CIA.S241855
doi: 10.2147/CIA.S241855 pubmed: 32214804 pmcid: 7084127
Chen C, Yin P, Hu S, Sun X, Li B (2020) Circular RNA-9119 protects IL-1β-treated chondrocytes from apoptosis in an osteoarthritis cell model by intercepting the microRNA-26a/PTEN axis. Life Sci 256:117924. https://doi.org/10.1016/j.lfs.2020.117924
doi: 10.1016/j.lfs.2020.117924 pubmed: 32522568
Ghafouri-Fard S, Poulet C, Malaise M et al (2021) The emerging role of non-coding RNAs in osteoarthritis. Front Immunol 12:773171. https://doi.org/10.3389/fimmu.2021.773171
doi: 10.3389/fimmu.2021.773171 pubmed: 34912342 pmcid: 8666442
Li J, Huang J, Dai L et al (2012) miR-146a, an IL-1β responsive miRNA, induces vascular endothelial growth factor and chondrocyte apoptosis by targeting Smad4. Arthritis Res Ther 14:R75. https://doi.org/10.1186/ar3798
doi: 10.1186/ar3798 pubmed: 22507670 pmcid: 3446449
Jin L, Zhao J, Jing W et al (2014) Role of miR-146a in human chondrocyte apoptosis in response to mechanical pressure injury in vitro. Int J Mol Med 34:451–463. https://doi.org/10.3892/ijmm.2014.1808
doi: 10.3892/ijmm.2014.1808 pubmed: 24939082 pmcid: 4094584
Zhou X, Jiang L, Fan G et al (2019) Role of the ciRS-7/miR-7 axis in the regulation of proliferation, apoptosis and inflammation of chondrocytes induced by IL-1β. Int Immunopharmacol 71:233–240. https://doi.org/10.1016/j.intimp.2019.03.037
doi: 10.1016/j.intimp.2019.03.037 pubmed: 30925324
Zhou X, Li J, Zhou Y et al (2020) Down-regulated ciRS-7/up-regulated miR-7 axis aggravated cartilage degradation and autophagy defection by PI3K/AKT/mTOR activation mediated by IL-17A in osteoarthritis. Aging 12:20163–20183. https://doi.org/10.18632/aging.103731
Makki MS, Haqqi TM (2015) miR-139 modulates MCPIP1/IL-6 expression and induces apoptosis in human OA chondrocytes. Exp Mol Med 47:e189. https://doi.org/10.1038/emm.2015.66
doi: 10.1038/emm.2015.66 pubmed: 26450708 pmcid: 4673474
Boraldi F, Lofaro FD, Quaglino D (2021) Apoptosis in the extraosseous calcification process. Cells 10(1):131. https://doi.org/10.3390/cells10010131
doi: 10.3390/cells10010131 pubmed: 33445441 pmcid: 7827519
Wang J, Chen L, Jin S et al (2016) MiR-98 promotes chondrocyte apoptosis by decreasing Bcl-2 expression in a rat model of osteoarthritis. Acta Biochim Biophys Sin (Shanghai) 48:923–929. https://doi.org/10.1093/abbs/gmw084
doi: 10.1093/abbs/gmw084 pubmed: 27590063
Wang J, Chen L, Jin S et al (2017) Altered expression of microRNA-98 in IL-1β-induced cartilage degradation and its role in chondrocyte apoptosis. Mol Med Rep 16:3208–3216. https://doi.org/10.3892/mmr.2017.7028
doi: 10.3892/mmr.2017.7028 pubmed: 28765925 pmcid: 5547958
Ji B, Guo W, Ma H et al (2017) Isoliquiritigenin suppresses IL-1beta induced apoptosis and inflammation in chondrocyte-like ATDC5 cells by inhibiting NF-kappaB and exerts chondroprotective effects on a mouse model of anterior cruciate ligament transection. Int J Mol Med 40:1709–1718. https://doi.org/10.3892/ijmm.2017.3177
doi: 10.3892/ijmm.2017.3177 pubmed: 29039445 pmcid: 5716454
Sun K, Luo J, Jing X et al (2021) Hyperoside ameliorates the progression of osteoarthritis: an in vitro and in vivo study. Phytomedicine Int J Phytother Phytopharmacol 80:153387. https://doi.org/10.1016/j.phymed.2020.153387
doi: 10.1016/j.phymed.2020.153387
Yu H, Li M, Wen X et al (2022) Elevation of α-1,3 fucosylation promotes the binding ability of TNFR1 to TNF-α and contributes to osteoarthritic cartilage destruction and apoptosis. Arthritis Res Ther 24:93. https://doi.org/10.1186/s13075-022-02776-z
doi: 10.1186/s13075-022-02776-z pubmed: 35488351 pmcid: 9052622
Barbero A, Grogan S, Schäfer D, Heberer M, Mainil-Varlet P, Martin I (2004) Age related changes in human articular chondrocyte yield, proliferation and post-expansion chondrogenic capacity. Osteoarthr Cartil 12:476–484
doi: 10.1016/j.joca.2004.02.010
Huang D, Xiao J, Deng X et al (2018) Association between Fas/FasL gene polymorphism and musculoskeletal degenerative diseases: a meta-analysis. BMC Musculoskelet Disord 19:137. https://doi.org/10.1186/s12891-018-2057-z
doi: 10.1186/s12891-018-2057-z pubmed: 29734947 pmcid: 5938814
Kühn K, Lotz M (2001) Regulation of CD95 (Fas/APO-1)-induced apoptosis in human chondrocytes. Arthritis Rheum 44:1644–1653
doi: 10.1002/1529-0131(200107)44:7<1644::AID-ART287>3.0.CO;2-S pubmed: 11465715
Scaffidi C, Fulda S, Srinivasan A et al (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–1687
doi: 10.1093/emboj/17.6.1675 pubmed: 9501089 pmcid: 1170515
Tummers B, Green DR (2017) Caspase-8: regulating life and death. Immunol Rev 277:76–89. https://doi.org/10.1111/imr.12541
doi: 10.1111/imr.12541 pubmed: 28462525 pmcid: 5417704
Alvarez-Diaz S, Dillon CP, Lalaoui N et al (2016) The pseudokinase MLKL and the kinase RIPK3 have distinct roles in autoimmune disease caused by loss of death-receptor-induced apoptosis. Immunity 45:513–526. https://doi.org/10.1016/j.immuni.2016.07.016
doi: 10.1016/j.immuni.2016.07.016 pubmed: 27523270 pmcid: 5040700
Tummers B, Mari L, Guy CS, Heckmann BL, Rodriguez DA, Rühl S, Moretti J, Crawford JC, Fitzgerald P, Kanneganti TD, Janke LJ, Pelletier S, Blander JM, Green DR (2020) Caspase-8-dependent inflammatory responses are controlled by its adaptor, FADD, and necroptosis. Immunity 52(6):994–1006.e8. https://doi.org/10.1016/j.immuni.2020.04.010
doi: 10.1016/j.immuni.2020.04.010 pubmed: 32428502 pmcid: 7306001
Wei L, Sun X-j, Wang Z, Chen Q (2006) CD95-induced osteoarthritic chondrocyte apoptosis and necrosis: dependency on p38 mitogen-activated protein kinase. Arthritis Res Ther 8:R37
doi: 10.1186/ar1891 pubmed: 16469115 pmcid: 1526592
Eskandari E, Eaves CJ (2022) Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis. J Cell Biol 221(6):e202201159.  https://doi.org/10.1083/jcb.202201159
Larsen BD, Sørensen CS (2017) The caspase-activated DNase: apoptosis and beyond. FEBS J 284:1160–1170. https://doi.org/10.1111/febs.13970
doi: 10.1111/febs.13970 pubmed: 27865056
Khalil H, Peltzer N, Walicki J et al (2012) Caspase-3 protects stressed organs against cell death. Mol Cell Biol 32:4523–4533. https://doi.org/10.1128/MCB.00774-12
doi: 10.1128/MCB.00774-12 pubmed: 22949508 pmcid: 3486191
Vaillancourt F, Fahmi H, Shi Q et al (2008) 4-Hydroxynonenal induces apoptosis in human osteoarthritic chondrocytes: the protective role of glutathione-S-transferase. Arthritis Res Ther 10:R107. https://doi.org/10.1186/ar2503
doi: 10.1186/ar2503 pubmed: 18782442 pmcid: 2592788
Ryu JH, Shin Y, Huh YH, Yang S, Chun CH, Chun JS (2012) Hypoxia-inducible factor-2α regulates Fas-mediated chondrocyte apoptosis during osteoarthritic cartilage destruction. Cell Death Differ 19:440–450. https://doi.org/10.1038/cdd.2011.111
doi: 10.1038/cdd.2011.111 pubmed: 21869830
Bolduc JA, Collins JA, Loeser RF (2019) Reactive oxygen species, aging and articular cartilage homeostasis. Free Radic Biol Med 132:73–82. https://doi.org/10.1016/j.freeradbiomed.2018.08.038
doi: 10.1016/j.freeradbiomed.2018.08.038 pubmed: 30176344
Cheleschi S, De Palma A, Pascarelli NA, Giordano N, Galeazzi M, Tenti S, Fioravanti A (2017) Could oxidative stress regulate the expression of microRNA-146a and MicroRNA-34a in human osteoarthritic chondrocyte cultures? Int J Mol Sci 18(12):2660. https://doi.org/10.3390/ijms18122660
doi: 10.3390/ijms18122660 pubmed: 29292727 pmcid: 5751262
Li S, Yang X, Feng Z, Wang P, Zhu W, Cui S (2018) Catalase enhances viability of human chondrocytes in culture by reducing reactive oxygen species and counteracting tumor necrosis factor-α-induced apoptosis. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 49:2427–2442. https://doi.org/10.1159/000493841
doi: 10.1159/000493841
Lepetsos P, Papavassiliou AG (2016) ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys Acta 1862:576–591. https://doi.org/10.1016/j.bbadis.2016.01.003
doi: 10.1016/j.bbadis.2016.01.003 pubmed: 26769361
Collins JA, Wood ST, Nelson KJ et al (2016) Oxidative stress promotes peroxiredoxin hyperoxidation and attenuates pro-survival signaling in aging chondrocytes. J Biol Chem 291:6641–6654. https://doi.org/10.1074/jbc.M115.693523
doi: 10.1074/jbc.M115.693523 pubmed: 26797130 pmcid: 4807251
Yu SM, Kim SJ (2014) Withaferin A-caused production of intracellular reactive oxygen species modulates apoptosis via PI3K/Akt and JNKinase in rabbit articular chondrocytes. J Korean Med Sci 29:1042–1053. https://doi.org/10.3346/jkms.2014.29.8.1042
doi: 10.3346/jkms.2014.29.8.1042 pubmed: 25120312 pmcid: 4129194
Khan NM, Ansari MY, Haqqi TM (2017) Sucrose, but not glucose, blocks IL1-β-induced inflammatory response in human chondrocytes by inducing autophagy via AKT/mTOR pathway. J Cell Biochem 118:629–639. https://doi.org/10.1002/jcb.25750
doi: 10.1002/jcb.25750 pubmed: 27669541
Lepetsos P, Papavassiliou KA, Papavassiliou AG (2019) Redox and NF-κB signaling in osteoarthritis. Free Radic Biol Med 132:90–100. https://doi.org/10.1016/j.freeradbiomed.2018.09.025
doi: 10.1016/j.freeradbiomed.2018.09.025 pubmed: 30236789
Abusarah J, Bentz M, Benabdoune H et al (2017) An overview of the role of lipid peroxidation-derived 4-hydroxynonenal in osteoarthritis. Inflamm Res 66:637–651. https://doi.org/10.1007/s00011-017-1044-4
doi: 10.1007/s00011-017-1044-4 pubmed: 28447122
Khan NM, Ahmad I, Haqqi TM (2018) Nrf2/ARE pathway attenuates oxidative and apoptotic response in human osteoarthritis chondrocytes by activating ERK1/2/ELK1-P70S6K-P90RSK signaling axis. Free Radic Biol Med 116:159–171. https://doi.org/10.1016/j.freeradbiomed.2018.01.013
doi: 10.1016/j.freeradbiomed.2018.01.013 pubmed: 29339024 pmcid: 5815915
Marchev AS, Dimitrova PA, Burns AJ, Kostov RV, Dinkova-Kostova AT, Georgiev MI (2017) Oxidative stress and chronic inflammation in osteoarthritis: can NRF2 counteract these partners in crime? Ann N Y Acad Sci 1401:114–135. https://doi.org/10.1111/nyas.13407
doi: 10.1111/nyas.13407 pubmed: 28662306
He XF, Li W, Zhu LM, Zhang JW (2018) Investigation for effects of iNOS on biological function of chondrocytes in rats with post-traumatic osteoarthritis. Eur Rev Med Pharmacol Sci 22:7140–7147. https://doi.org/10.26355/eurrev_201811_16245
He XF, Li W, Zhu LM, Zhang JW (2018) Investigation for effects of iNOS on biological function of chondrocytes in rats with post-traumatic osteoarthritis. Eur Rev Med Pharmacol Sci 22:7140–7147. https://doi.org/10.26355/eurrev_201811_16245
Balaganur V, Pathak NN, Lingaraju MC et al (2014) Effect of S-methylisothiourea, an inducible nitric oxide synthase inhibitor, in joint pain and pathology in surgically induced model of osteoarthritis. Connect Tissue Res 55:367–377. https://doi.org/10.3109/03008207.2014.953629
doi: 10.3109/03008207.2014.953629 pubmed: 25111192
Fu X, He S, Wang L et al (2022) Madecassic acid ameliorates the progression of osteoarthritis: an in vitro and in vivo study. Drug Des Dev Ther 16:3793–3804. https://doi.org/10.2147/DDDT.S383632
doi: 10.2147/DDDT.S383632
Oeckinghaus A, Ghosh S (2009) The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 1:a000034. https://doi.org/10.1101/cshperspect.a000034
doi: 10.1101/cshperspect.a000034 pubmed: 20066092 pmcid: 2773619
Jimi E, Fei H, Nakatomi C (2019) NF-κB signaling regulates physiological and pathological chondrogenesis. Int J Mol Sci 20(24):6275. https://doi.org/10.3390/ijms20246275
doi: 10.3390/ijms20246275 pubmed: 31842396 pmcid: 6941088
Niederberger E, Geisslinger G (2008) The IKK-NF-kappaB pathway: a source for novel molecular drug targets in pain therapy? FASEB J Off Publ Fed Am Soc Exp Biol 22:3432–3442. https://doi.org/10.1096/fj.08-109355
doi: 10.1096/fj.08-109355
Oliver KM, Garvey JF, Ng CT et al (2009) Hypoxia activates NF-kappaB-dependent gene expression through the canonical signaling pathway. Antioxid Redox Signal 11:2057–2064. https://doi.org/10.1089/ARS.2008.2400
doi: 10.1089/ARS.2008.2400 pubmed: 19422287
Hayden MS, Ghosh S (2014) Regulation of NF-κB by TNF family cytokines. Semin Immunol 26:253–266. https://doi.org/10.1016/j.smim.2014.05.004
doi: 10.1016/j.smim.2014.05.004 pubmed: 24958609 pmcid: 4156877
Sun S-C (2017) The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol 17:545–558. https://doi.org/10.1038/nri.2017.52
doi: 10.1038/nri.2017.52 pubmed: 28580957 pmcid: 5753586
DiDonato JA, Mercurio F, Karin M (2012) NF-κB and the link between inflammation and cancer. Immunol Rev 246:379–400. https://doi.org/10.1111/j.1600-065X.2012.01099.x
doi: 10.1111/j.1600-065X.2012.01099.x pubmed: 22435567
Jimi E, Ghosh S (2005) Role of nuclear factor-kappaB in the immune system and bone. Immunol Rev 208:80–87
doi: 10.1111/j.0105-2896.2005.00329.x pubmed: 16313342
Kobayashi H, Chang SH, Mori D et al (2016) Biphasic regulation of chondrocytes by RelA through induction of anti-apoptotic and catabolic target genes. Nat Commun 7:13336. https://doi.org/10.1038/ncomms13336
doi: 10.1038/ncomms13336 pubmed: 27830706 pmcid: 5109547
Park M, Yong Y, Choi S-W, Kim JH, Lee JE, Kim D-W (2007) Constitutive RelA activation mediated by Nkx3.2 controls chondrocyte viability. Nat Cell Biol 9:287–298
doi: 10.1038/ncb1538 pubmed: 17310243
Oh H-K, Park M, Choi S-W et al (2021) Suppression of osteoarthritis progression by post-natal induction of Nkx3.2. Biochem Biophys Res Commun 571:188–194. https://doi.org/10.1016/j.bbrc.2021.07.074
doi: 10.1016/j.bbrc.2021.07.074 pubmed: 34330063
Saito T, Tanaka S (2017) Molecular mechanisms underlying osteoarthritis development: Notch and NF-κB. Arthritis Res Ther 19:94. https://doi.org/10.1186/s13075-017-1296-y
doi: 10.1186/s13075-017-1296-y pubmed: 28506315 pmcid: 5433029
Knobloch TJ, Madhavan S, Nam J, Agarwal S, Agarwal S (2008) Regulation of chondrocytic gene expression by biomechanical signals. Crit Rev Eukaryot Gene Expr 18:139–150
doi: 10.1615/CritRevEukarGeneExpr.v18.i2.30 pubmed: 18304028 pmcid: 4967411
Fan Z, Yang H, Bau B, Söder S, Aigner T (2006) Role of mitogen-activated protein kinases and NFkappaB on IL-1beta-induced effects on collagen type II, MMP-1 and 13 mRNA expression in normal articular human chondrocytes. Rheumatol Int 26:900–903
doi: 10.1007/s00296-006-0114-7 pubmed: 16468044
Jenei-Lanzl Z, Meurer A, Zaucke F (2019) Interleukin-1β signaling in osteoarthritis — chondrocytes in focus. Cell Signal 53:212–223. https://doi.org/10.1016/j.cellsig.2018.10.005
doi: 10.1016/j.cellsig.2018.10.005 pubmed: 30312659
Ulivi V, Giannoni P, Gentili C, Cancedda R, Descalzi F (2008) p38/NF-kB-dependent expression of COX-2 during differentiation and inflammatory response of chondrocytes. J Cell Biochem 104:1393–1406. https://doi.org/10.1002/jcb.21717
doi: 10.1002/jcb.21717 pubmed: 18286508
Miwa M, Saura R, Hirata S, Hayashi Y, Mizuno K, Itoh H (2000) Induction of apoptosis in bovine articular chondrocyte by prostaglandin E(2) through cAMP-dependent pathway. Osteoarthr Cartil 8:17–24
doi: 10.1053/joca.1999.0266
Fang T, Zhou X, Jin M, Nie J, Li X (2021) Molecular mechanisms of mechanical load-induced osteoarthritis. Int Orthop 45:1125–1136. https://doi.org/10.1007/s00264-021-04938-1
doi: 10.1007/s00264-021-04938-1 pubmed: 33459826
Murahashi Y, Yano F, Kobayashi H et al (2018) Intra-articular administration of IκBα kinase inhibitor suppresses mouse knee osteoarthritis via downregulation of the NF-κB/HIF-2α axis. Sci Rep 8:16475. https://doi.org/10.1038/s41598-018-34830-9
doi: 10.1038/s41598-018-34830-9 pubmed: 30405206 pmcid: 6220282
Feng T, Wu Q-F (2022) A review of non-coding RNA related to NF-κB signaling pathway in the pathogenesis of osteoarthritis. Int Immunopharmacol 106:108607. https://doi.org/10.1016/j.intimp.2022.108607
doi: 10.1016/j.intimp.2022.108607 pubmed: 35180625
Schulte G, Bryja V (2017) WNT signalling: mechanisms and therapeutic opportunities. Br J Pharmacol 174:4543–4546. https://doi.org/10.1111/bph.14065
doi: 10.1111/bph.14065 pubmed: 29235106 pmcid: 5727308
Liu J, Xiao Q, Xiao J et al (2022) Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther 7:3. https://doi.org/10.1038/s41392-021-00762-6
doi: 10.1038/s41392-021-00762-6 pubmed: 34980884 pmcid: 8724284
Monteagudo S, Lories RJ (2017) Cushioning the cartilage: a canonical Wnt restricting matter. Nat Rev Rheumatol 13:670–681. https://doi.org/10.1038/nrrheum.2017.171
doi: 10.1038/nrrheum.2017.171 pubmed: 29021569
Usami Y, Gunawardena AT, Iwamoto M, Enomoto-Iwamoto M (2016) Wnt signaling in cartilage development and diseases: lessons from animal studies. Lab Invest J Tech Methods Pathol 96:186–196. https://doi.org/10.1038/labinvest.2015.142
doi: 10.1038/labinvest.2015.142
Stampella A, Monteagudo S, Lories R (2017) Wnt signaling as target for the treatment of osteoarthritis. Best Pract Res Clin Rheumatol 31:721–729. https://doi.org/10.1016/j.berh.2018.03.004
doi: 10.1016/j.berh.2018.03.004 pubmed: 30509416
Kovács B, Vajda E, Nagy EE (2019) Regulatory effects and interactions of the wnt and OPG-RANKL-RANK signaling at the bone-cartilage interface in osteoarthritis. Int J Mol Sci 20(18):4653. https://doi.org/10.3390/ijms20184653
doi: 10.3390/ijms20184653 pubmed: 31546898 pmcid: 6769977
Hwang S-G, Ryu J-H, Kim I-C et al (2004) Wnt-7a causes loss of differentiated phenotype and inhibits apoptosis of articular chondrocytes via different mechanisms. J Biol Chem 279:26597–26604
doi: 10.1074/jbc.M401401200 pubmed: 15082716
Nalesso G, Thomas BL, Sherwood JC et al (2017) WNT16 antagonises excessive canonical WNT activation and protects cartilage in osteoarthritis. Ann Rheum Dis 76:218–226. https://doi.org/10.1136/annrheumdis-2015-208577
doi: 10.1136/annrheumdis-2015-208577 pubmed: 27147711
Ma B, Zhong L, van Blitterswijk CA, Post JN, Karperien M (2013) T cell factor 4 is a pro-catabolic and apoptotic factor in human articular chondrocytes by potentiating nuclear factor κB signaling. J Biol Chem 288:17552–17558. https://doi.org/10.1074/jbc.M113.453985
doi: 10.1074/jbc.M113.453985 pubmed: 23603903 pmcid: 3682554
Ma B, Hottiger MO (2016) Crosstalk between Wnt/β-catenin and NF-κB signaling pathway during inflammation. Front Immunol 7:378
doi: 10.3389/fimmu.2016.00378 pubmed: 27713747 pmcid: 5031610
Huang X, Zhong L, Hendriks J, Post JN, Karperien M (2018) The effects of the WNT-signaling modulators BIO and PKF118-310 on the chondrogenic differentiation of human mesenchymal stem cells. Int J Mol Sci 19(2):561. https://doi.org/10.3390/ijms19020561
doi: 10.3390/ijms19020561 pubmed: 29438298 pmcid: 5855783
Blom AB, Brockbank SM, van Lent PL et al (2009) Involvement of the Wnt signaling pathway in experimental and human osteoarthritis: prominent role of Wnt-induced signaling protein 1. Arthritis Rheum 60:501–512. https://doi.org/10.1002/art.24247
doi: 10.1002/art.24247 pubmed: 19180479
Zhong L, Huang X, Karperien M, Post JN (2015) The regulatory role of signaling crosstalk in hypertrophy of MSCs and human articular chondrocytes. Int J Mol Sci 16:19225–19247. https://doi.org/10.3390/ijms160819225
doi: 10.3390/ijms160819225 pubmed: 26287176 pmcid: 4581295
Xia H, Cao D, Yang F et al (2020) Jiawei Yanghe decoction ameliorates cartilage degradation in vitro and vivo via Wnt/β-catenin signaling pathway. Biomed Pharmacother 122:109708. https://doi.org/10.1016/j.biopha.2019.109708
doi: 10.1016/j.biopha.2019.109708 pubmed: 31918279
Luyten FP, Tylzanowski P, Lories RJ (2009) Wnt signaling and osteoarthritis. Bone 44:522–527. https://doi.org/10.1016/j.bone.2008.12.006
doi: 10.1016/j.bone.2008.12.006 pubmed: 19136083
Wang Y, Fan X, Xing L, Tian F (2019) Wnt signaling: a promising target for osteoarthritis therapy. Cell Commun Signal 17:97. https://doi.org/10.1186/s12964-019-0411-x
doi: 10.1186/s12964-019-0411-x pubmed: 31420042 pmcid: 6697957
Li T-F, Chen D, Wu Q et al (2006) Transforming growth factor-beta stimulates cyclin D1 expression through activation of beta-catenin signaling in chondrocytes. J Biol Chem 281:21296–21304. https://doi.org/10.1074/jbc.M600514200
doi: 10.1074/jbc.M600514200 pubmed: 16690606
Zhang M, Wang M, Tan X, Li T-F, Zhang YE, Chen D (2010) Smad3 prevents beta-catenin degradation and facilitates beta-catenin nuclear translocation in chondrocytes. J Biol Chem 285:8703–8710. https://doi.org/10.1074/jbc.M109.093526
doi: 10.1074/jbc.M109.093526 pubmed: 20097766 pmcid: 2838293
Papathanasiou I, Malizos KN, Tsezou A (2012) Bone morphogenetic protein-2-induced Wnt/β-catenin signaling pathway activation through enhanced low-density-lipoprotein receptor-related protein 5 catabolic activity contributes to hypertrophy in osteoarthritic chondrocytes. Arthritis Res Ther 14:R82. https://doi.org/10.1186/ar3805
doi: 10.1186/ar3805 pubmed: 22513174 pmcid: 3446456
van den Bosch MH, Blom AB, Maeda A et al (2015) WISP1 aggravates osteoarthritis by modulation of TGF-beta signaling and positive regulation of canonical Wnt signaling. Osteoarthr Cartil 23:A44–A45. https://doi.org/10.1016/j.joca.2015.02.098
doi: 10.1016/j.joca.2015.02.098
van den Bosch MH, Blom AB, van Lent PL et al (2014) Canonical Wnt signaling skews TGF-β signaling in chondrocytes towards signaling via ALK1 and Smad 1/5/8. Cell Signal 26:951–958. https://doi.org/10.1016/j.cellsig.2014.01.021
doi: 10.1016/j.cellsig.2014.01.021 pubmed: 24463008
Shen W, Huang J, Wang Y (2021) Biological significance of NOTCH signaling strength. Front Cell Dev Biol 9:652273. https://doi.org/10.3389/fcell.2021.652273
doi: 10.3389/fcell.2021.652273 pubmed: 33842479 pmcid: 8033010
Platonova N, Lesma E, Basile A et al (2017) Targeting Notch as a therapeutic approach for human malignancies. Curr Pharm Des 23:108–134. https://doi.org/10.2174/1381612822666161006160524
doi: 10.2174/1381612822666161006160524 pubmed: 27719637
Iso T, Kedes L, Hamamori Y (2003) HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 194:237–255
doi: 10.1002/jcp.10208 pubmed: 12548545
Iso T, Sartorelli V, Poizat C et al (2001) HERP, a novel heterodimer partner of HES/E(spl) in Notch signaling. Mol Cell Biol 21:6080–6089
doi: 10.1128/MCB.21.17.6080-6089.2001 pubmed: 11486045 pmcid: 87325
Ustunel I, Ozenci AM, Sahin Z et al (2008) The immunohistochemical localization of notch receptors and ligands in human articular cartilage, chondroprogenitor culture and ultrastructural characteristics of these progenitor cells. Acta Histochem 110:397–407. https://doi.org/10.1016/j.acthis.2007.12.005
doi: 10.1016/j.acthis.2007.12.005 pubmed: 18272209
Karlsson C, Brantsing C, Egell S, Lindahl A (2008) Notch1, Jagged1, and HES5 are abundantly expressed in osteoarthritis. Cells Tissues Organs 188:287–298. https://doi.org/10.1159/000121610
doi: 10.1159/000121610 pubmed: 18354251
Mirando AJ, Liu Z, Moore T et al (2013) RBP-Jκ-dependent Notch signaling is required for murine articular cartilage and joint maintenance. Arthritis Rheum 65:2623–2633. https://doi.org/10.1002/art.38076
doi: 10.1002/art.38076 pubmed: 23839930 pmcid: 4038327
Haller R, Schwanbeck R, Martini S et al (2012) Notch1 signaling regulates chondrogenic lineage determination through Sox9 activation. Cell Death Differ 19:461–469. https://doi.org/10.1038/cdd.2011.114
doi: 10.1038/cdd.2011.114 pubmed: 21869831
Sugita S, Hosaka Y, Okada K et al (2015) Transcription factor Hes1 modulates osteoarthritis development in cooperation with calcium/calmodulin-dependent protein kinase 2. Proc Natl Acad Sci USA 112:3080–3085. https://doi.org/10.1073/pnas.1419699112
doi: 10.1073/pnas.1419699112 pubmed: 25733872 pmcid: 4364241
Ju B-G, Solum D, Song EJ et al (2004) Activating the PARP-1 sensor component of the groucho/ TLE1 corepressor complex mediates a CaMKinase IIdelta-dependent neurogenic gene activation pathway. Cell 119:815–829
doi: 10.1016/j.cell.2004.11.017 pubmed: 15607978
Liu Z, Chen J, Mirando AJ et al (2015) A dual role for NOTCH signaling in joint cartilage maintenance and osteoarthritis. Sci Signal 8:ra71. https://doi.org/10.1126/scisignal.aaa3792
Chen S, Lee BH, Bae Y (2014) Notch signaling in skeletal stem cells. Calcif Tissue Int 94:68–77. https://doi.org/10.1007/s00223-013-9773-z
doi: 10.1007/s00223-013-9773-z pubmed: 23963632
Ratneswaran A, Beier F (2015) A top-notch dilemma: the complex role of NOTCH signaling in osteoarthritis. Sci Signal 8:fs14. https://doi.org/10.1126/scisignal.aac7862
doi: 10.1126/scisignal.aac7862 pubmed: 26198356
Oswald F, Liptay S, Adler G, Schmid RM (1998) NF-kappaB2 is a putative target gene of activated Notch-1 via RBP-Jkappa. Mol Cell Biol 18:2077–2088
doi: 10.1128/MCB.18.4.2077 pubmed: 9528780 pmcid: 121438
Zhang H, Hilton MJ, Anolik JH et al (2014) NOTCH inhibits osteoblast formation in inflammatory arthritis via noncanonical NF-κB. J Clin Investig 124:3200–3214. https://doi.org/10.1172/JCI68901
doi: 10.1172/JCI68901 pubmed: 24892805 pmcid: 4071381
Qi L, Wang M, He J, Jia B, Ren J, Zheng S (2022) E3 ubiquitin ligase ITCH improves LPS-induced chondrocyte injury by mediating JAG1 ubiquitination in osteoarthritis. Chem Biol Interact 360:109921. https://doi.org/10.1016/j.cbi.2022.109921
doi: 10.1016/j.cbi.2022.109921 pubmed: 35385713
Matsui M, Corey DR (2017) Non-coding RNAs as drug targets. Nat Rev Drug Discov 16:167–179. https://doi.org/10.1038/nrd.2016.117
doi: 10.1038/nrd.2016.117 pubmed: 27444227
Wright MW, Bruford EA (2011) Naming ‘junk’: human non-protein coding RNA (ncRNA) gene nomenclature. Hum Genomics 5:90–98. https://doi.org/10.1186/1479-7364-5-2-90
doi: 10.1186/1479-7364-5-2-90 pubmed: 21296742 pmcid: 3051107
Abdelmohsen K (2020) Noncoding RNAs in control of gene expression. Biochim Biophys Acta Gene Regul Mech 1863:194520. https://doi.org/10.1016/j.bbagrm.2020.194520
doi: 10.1016/j.bbagrm.2020.194520 pubmed: 32113982 pmcid: 8452343
Lu TX, Rothenberg ME (2018) MicroRNA. J Allergy Clin Immunol 141:1202–1207. https://doi.org/10.1016/j.jaci.2017.08.034
doi: 10.1016/j.jaci.2017.08.034 pubmed: 29074454
Malemud CJ (2018) MicroRNAs and osteoarthritis. Cells 7(8):92. https://doi.org/10.3390/cells7080092
doi: 10.3390/cells7080092 pubmed: 30071609
Lu X, Li Y, Chen H, Pan Y, Lin R, Chen S (2021) miR-335-5P contributes to human osteoarthritis by targeting HBP1. Exp Ther Med 21:109. https://doi.org/10.3892/etm.2020.9541
doi: 10.3892/etm.2020.9541 pubmed: 33335572
Wang W-T, Huang Z-P, Sui S, Liu J-H, Yu D-M, Wang W-B (2020) microRNA-1236 promotes chondrocyte apoptosis in osteoarthritis via direct suppression of PIK3R3. Life Sci 253:117694. https://doi.org/10.1016/j.lfs.2020.117694
doi: 10.1016/j.lfs.2020.117694 pubmed: 32325132
Sun Y, Bao X, Chen H, Zhou L (2022) MicroRNA-128-3p suppresses interleukin-1β-stimulated cartilage degradation and chondrocyte apoptosis via targeting zinc finger E-box binding homeobox 1 in osteoarthritis. Bioengineered 13:1736–1745. https://doi.org/10.1080/21655979.2021.2019879
doi: 10.1080/21655979.2021.2019879 pubmed: 34990303 pmcid: 8805990
Zhang H, Chen C, Song J (2022) microRNA-4701-5p protects against interleukin-1β induced human chondrocyte CHON-001 cells injury via modulating HMGA1. J Orthop Surg Res 17:246. https://doi.org/10.1186/s13018-022-03083-8
doi: 10.1186/s13018-022-03083-8 pubmed: 35459188 pmcid: 9034483
Li H, Li Z, Pi Y et al (2020) MicroRNA-375 exacerbates knee osteoarthritis through repressing chondrocyte autophagy by targeting ATG2B. Aging (Albany NY) 12:7248–7261. https://doi.org/10.18632/aging.103073
Zhang M, Mou L, Liu S, Sun F, Gong M (2021) Circ_0001103 alleviates IL-1β-induced chondrocyte cell injuries by upregulating SIRT1 via targeting miR-375. Clin Immunol 227:108718. https://doi.org/10.1016/j.clim.2021.108718
doi: 10.1016/j.clim.2021.108718 pubmed: 33819576
Shao J, Ding Z, Peng J et al (2020) MiR-146a-5p promotes IL-1β-induced chondrocyte apoptosis through the TRAF6-mediated NF-kB pathway. Inflamm Res Off J Eur Histamine Res Soc 69:619–630. https://doi.org/10.1007/s00011-020-01346-w
doi: 10.1007/s00011-020-01346-w
Zhang H, Zheng W, Li D, Zheng J (2021) miR-146a-5p promotes chondrocyte apoptosis and inhibits autophagy of osteoarthritis by targeting NUMB. Cartilage 13:1467S-1477S. https://doi.org/10.1177/19476035211023550
doi: 10.1177/19476035211023550 pubmed: 34315248 pmcid: 8804840
Wang Y, Shen S, Li Z, Li W, Weng X (2020) MIR-140-5p affects chondrocyte proliferation, apoptosis, and inflammation by targeting HMGB1 in osteoarthritis. Inflamm Res 69:63–73. https://doi.org/10.1007/s00011-019-01294-0
doi: 10.1007/s00011-019-01294-0 pubmed: 31712854
Pan H, Dai H, Wang L et al (2020) MicroRNA-410-3p modulates chondrocyte apoptosis and inflammation by targeting high mobility group box 1 (HMGB1) in an osteoarthritis mouse model. BMC Musculoskelet Disord 21:486. https://doi.org/10.1186/s12891-020-03489-7
doi: 10.1186/s12891-020-03489-7 pubmed: 32709223 pmcid: 7379779
Yu CD, Miao WH, Zhang YY, Zou MJ, Yan XF (2018) Inhibition of miR-126 protects chondrocytes from IL-1β induced inflammation via upregulation of Bcl-2. Bone Joint Res 7:414–421. https://doi.org/10.1302/2046-3758.76.Bjr-2017-0138.R1
doi: 10.1302/2046-3758.76.Bjr-2017-0138.R1 pubmed: 30034795 pmcid: 6035362
Miao G, Zang X, Hou H et al (2019) Bax targeted by miR-29a regulates chondrocyte apoptosis in osteoarthritis. Biomed Res Int 2019:1434538. https://doi.org/10.1155/2019/1434538
doi: 10.1155/2019/1434538 pubmed: 30993110 pmcid: 6434297
Wang WT, Huang ZP, Sui S, Liu JH, Yu DM, Wang WB (2020) microRNA-1236 promotes chondrocyte apoptosis in osteoarthritis via direct suppression of PIK3R3. Life Sci 253:117694. https://doi.org/10.1016/j.lfs.2020.117694
doi: 10.1016/j.lfs.2020.117694 pubmed: 32325132
Tu Y, Ma T, Wen T et al (2020) MicroRNA-377-3p alleviates IL-1β-caused chondrocyte apoptosis and cartilage degradation in osteoarthritis in part by downregulating ITGA6. Biochem Biophys Res Commun 523:46–53. https://doi.org/10.1016/j.bbrc.2019.11.186
doi: 10.1016/j.bbrc.2019.11.186 pubmed: 31831175
Ma F, Li G, Yu Y, Xu J, Wu X (2019) MiR-33b-3p promotes chondrocyte proliferation and inhibits chondrocyte apoptosis and cartilage ECM degradation by targeting DNMT3A in osteoarthritis. Biochem Biophys Res Commun 519:430–437. https://doi.org/10.1016/j.bbrc.2019.09.022
doi: 10.1016/j.bbrc.2019.09.022 pubmed: 31522815
Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159. https://doi.org/10.1038/nrg2521
doi: 10.1038/nrg2521 pubmed: 19188922
Huynh NP, Anderson BA, Guilak F, McAlinden A (2017) Emerging roles for long noncoding RNAs in skeletal biology and disease. Connect Tissue Res 58:116–141. https://doi.org/10.1080/03008207.2016.1194406
doi: 10.1080/03008207.2016.1194406 pubmed: 27254479
Boon RA, Jaé N, Holdt L, Dimmeler S (2016) Long noncoding RNAs: from clinical genetics to therapeutic targets? J Am Coll Cardiol 67:1214–1226. https://doi.org/10.1016/j.jacc.2015.12.051
doi: 10.1016/j.jacc.2015.12.051 pubmed: 26965544
Umlauf D, Fraser P, Nagano T (2008) The role of long non-coding RNAs in chromatin structure and gene regulation: variations on a theme. Biol Chem 389:323–331. https://doi.org/10.1515/BC.2008.047
doi: 10.1515/BC.2008.047 pubmed: 18225988
Guttman M, Amit I, Garber M et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227. https://doi.org/10.1038/nature07672
doi: 10.1038/nature07672 pubmed: 19182780 pmcid: 2754849
Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721–726
doi: 10.1038/nmeth1079 pubmed: 17694064
Gu LP, Jin S, Xu RC et al (2019) Long non-coding RNA PCAT-1 promotes tumor progression by inhibiting miR-129-5p in human ovarian cancer. Arch Med Sci 15:513–521. https://doi.org/10.5114/aoms.2018.75534
doi: 10.5114/aoms.2018.75534 pubmed: 30899305
Huang N, Dai W, Li Y, Sun J, Ma C, Li W (2020) LncRNA PCAT-1 upregulates RAP1A through modulating miR-324-5p and promotes survival in lung cancer. Arch Med Sci 16:1196–1206. https://doi.org/10.5114/aoms.2019.84235
doi: 10.5114/aoms.2019.84235 pubmed: 32864009
Zhou L, Gu M, Ma X et al (2020) Long non-coding RNA PCAT-1 regulates apoptosis of chondrocytes in osteoarthritis by sponging miR-27b-3p. J Bone Miner Metab. https://doi.org/10.1007/s00774-020-01128-8
doi: 10.1007/s00774-020-01128-8 pubmed: 32770398
Fan H, Ding L, Yang Y (2021) lncRNA SNHG16 promotes the occurrence of osteoarthritis by sponging miR-373-3p. Mol Med Rep 23(2):117. https://doi.org/10.3892/mmr.2020.11756
doi: 10.3892/mmr.2020.11756 pubmed: 33300061
Cheng W, Hao CY, Zhao S, Zhang LL, Liu D (2019) SNHG16 promotes the progression of osteoarthritis through activating microRNA-93–5p/CCND1 axis. Eur Rev Med Pharmacol Sci 23:9222–9229. https://doi.org/10.26355/eurrev_201911_19414
Zhang H, Li J, Shao W, Shen N (2020) LncRNA SNHG9 is downregulated in osteoarthritis and inhibits chondrocyte apoptosis by downregulating miR-34a through methylation. BMC Musculoskelet Disord 21:511. https://doi.org/10.1186/s12891-020-03497-7
doi: 10.1186/s12891-020-03497-7 pubmed: 32738890 pmcid: 7395373
Chen C, Xu Y (2021) Long noncoding RNA LINC00671 exacerbates osteoarthritis by promoting ONECUT2-mediated Smurf2 expression and extracellular matrix degradation. Int Immunopharmacol 90:106846. https://doi.org/10.1016/j.intimp.2020.106846
doi: 10.1016/j.intimp.2020.106846 pubmed: 33168412
Wang B, Li J, Tian F (2021) Downregulation of lncRNA SNHG14 attenuates osteoarthritis by inhibiting FSTL-1 mediated NLRP3 and TLR4/NF-κB pathway through miR-124–3p. Life Sci 270:119143. https://doi.org/10.1016/j.lfs.2021.119143
Fu Q, Zhu J, Wang B, Wu J, Li H, Han Y, Xiang D, Chen Y, Li L (2021) LINC02288 promotes chondrocyte apoptosis and inflammation through miR-374a-3p targeting RTN3. J Gene Med 23(5):e3314. https://doi.org/10.1002/jgm.3314
Chen Y, Zhang L, Li E et al (2020) Long-chain non-coding RNA HOTAIR promotes the progression of osteoarthritis via sponging miR-20b/PTEN axis. Life Sci 253:117685. https://doi.org/10.1016/j.lfs.2020.117685
doi: 10.1016/j.lfs.2020.117685 pubmed: 32315726
Gao Y, Zhao H, Li Y (2019) LncRNA MCM3AP-AS1 regulates miR-142-3p/HMGB1 to promote LPS-induced chondrocyte apoptosis. BMC Musculoskelet Disord 20:605. https://doi.org/10.1186/s12891-019-2967-4
doi: 10.1186/s12891-019-2967-4 pubmed: 31836002 pmcid: 6911297
JJiang H, Pang H, Wu P, Cao Z, Li Z, Yang X, (2021) LncRNA SNHG5 promotes chondrocyte proliferation and inhibits apoptosis in osteoarthritis by regulating miR-10a-5p/H3F3B axis. Connect Tissue Res 62(6):605–614. https://doi.org/10.1080/03008207.2020.1825701
doi: 10.1080/03008207.2020.1825701
Xu J, Pei Y, Lu J et al (2021) LncRNA SNHG7 alleviates IL-1β-induced osteoarthritis by inhibiting miR-214–5p-mediated PPARGC1B signaling pathways. Int Immunopharmacol 90:107150. https://doi.org/10.1016/j.intimp.2020.107150
doi: 10.1016/j.intimp.2020.107150 pubmed: 33296783
Tian F, Wang J, Zhang Z, Yang J (2020) LncRNA SNHG7/miR-34a-5p/SYVN1 axis plays a vital role in proliferation, apoptosis and autophagy in osteoarthritis. Biol Res 53:9. https://doi.org/10.1186/s40659-020-00275-6
doi: 10.1186/s40659-020-00275-6 pubmed: 32066502 pmcid: 7027214
Zhang X, Huang CR, Pan S et al (2020) Long non-coding RNA SNHG15 is a competing endogenous RNA of miR-141–3p that prevents osteoarthritis progression by upregulating BCL2L13 expression. Int Immunopharmacol 83:106425. https://doi.org/10.1016/j.intimp.2020.106425
doi: 10.1016/j.intimp.2020.106425 pubmed: 32247266
Duan R, Xie H, Liu ZZ (2020) The role of autophagy in osteoarthritis. Front Cell Dev Biol 8:608388. https://doi.org/10.3389/fcell.2020.608388
doi: 10.3389/fcell.2020.608388 pubmed: 33324654 pmcid: 7723985
Li H, Xie S, Li H, Zhang R, Zhang H (2020) LncRNA MALAT1 mediates proliferation of LPS treated-articular chondrocytes by targeting the miR-146a-PI3K/Akt/mTOR axis. Life Sci 254:116801. https://doi.org/10.1016/j.lfs.2019.116801
doi: 10.1016/j.lfs.2019.116801 pubmed: 31472145
Zhang Y, Wang F, Chen G, He R, Yang L (2019) LncRNA MALAT1 promotes osteoarthritis by modulating miR-150-5p/AKT3 axis. Cell Biosci 9:54. https://doi.org/10.1186/s13578-019-0302-2
doi: 10.1186/s13578-019-0302-2 pubmed: 31304004 pmcid: 6600894
Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621. https://doi.org/10.1016/0014-4827(61)90192-6
doi: 10.1016/0014-4827(61)90192-6 pubmed: 13905658
Rim YA, Nam Y, Ju JH (2020) The role of chondrocyte hypertrophy and senescence in osteoarthritis initiation and progression. Int J Mol Sci 21(7):2358. https://doi.org/10.3390/ijms21072358
doi: 10.3390/ijms21072358 pubmed: 32235300 pmcid: 7177949
Loeser RF, Collins JA, Diekman BO (2016) Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol 12:412–420. https://doi.org/10.1038/nrrheum.2016.65
doi: 10.1038/nrrheum.2016.65 pubmed: 27192932 pmcid: 4938009
Buckwalter JA, Roughley PJ, Rosenberg LC (1994) Age-related changes in cartilage proteoglycans: quantitative electron microscopic studies. Microsc Res Tech 28:398–408
doi: 10.1002/jemt.1070280506 pubmed: 7919527
DeGroot J, Verzijl N, Bank RA, Lafeber FP, Bijlsma JW, TeKoppele JM (1999) Age-related decrease in proteoglycan synthesis of human articular chondrocytes: the role of nonenzymatic glycation. Arthritis Rheum 42:1003–1009
doi: 10.1002/1529-0131(199905)42:5<1003::AID-ANR20>3.0.CO;2-K pubmed: 10323457
Xu M, Bradley EW, Weivoda MM et al (2017) Transplanted senescent cells induce an osteoarthritis-like condition in mice. J Gerontol A Biol Sci Med Sci 72:780–785. https://doi.org/10.1093/gerona/glw154
doi: 10.1093/gerona/glw154 pubmed: 27516624
Tan L, Register TC, Yammani RR (2020) Age-related decline in expression of molecular chaperones induces endoplasmic reticulum stress and chondrocyte apoptosis in articular cartilage. Aging Dis 11:1091–1102. https://doi.org/10.14336/ad.2019.1130
Wu G, Zhang C, Xu L et al (2022) BAK plays a key role in A-1331852-induced apoptosis in senescent chondrocytes. Biochem Biophys Res Commun 609:93–99. https://doi.org/10.1016/j.bbrc.2022.03.155
doi: 10.1016/j.bbrc.2022.03.155 pubmed: 35421634
Galluzzi L, Baehrecke EH, Ballabio A et al (2017) Molecular definitions of autophagy and related processes. Embo j 36:1811–1836. https://doi.org/10.15252/embj.201796697
He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93. https://doi.org/10.1146/annurev-genet-102808-114910
doi: 10.1146/annurev-genet-102808-114910 pubmed: 19653858 pmcid: 2831538
Mizushima N (2010) The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 22:132–139. https://doi.org/10.1016/j.ceb.2009.12.004
doi: 10.1016/j.ceb.2009.12.004 pubmed: 20056399
Zachari M, Ganley IG (2017) The mammalian ULK1 complex and autophagy initiation. Essays Biochem 61:585–596. https://doi.org/10.1042/EBC20170021
doi: 10.1042/EBC20170021 pubmed: 29233870 pmcid: 5869855
Wang J, Li J, Song D et al (2020) AMPK: implications in osteoarthritis and therapeutic targets. Am J Transl Res 12:7670–7681
pubmed: 33437352 pmcid: 7791500
Shi J, Zhang C, Yi Z, Lan C (2016) Explore the variation of MMP3, JNK, p38 MAPKs, and autophagy at the early stage of osteoarthritis. IUBMB Life 68:293–302. https://doi.org/10.1002/iub.1482
doi: 10.1002/iub.1482 pubmed: 26873249
Zhang F-J, Luo W, Lei G-H (2015) Role of HIF-1α and HIF-2α in osteoarthritis. Joint Bone Spine 82:144–147. https://doi.org/10.1016/j.jbspin.2014.10.003
doi: 10.1016/j.jbspin.2014.10.003 pubmed: 25553838
Settembre C, Di Malta C, Polito VA et al (2011) TFEB links autophagy to lysosomal biogenesis. Science 332:1429–1433. https://doi.org/10.1126/science.1204592
doi: 10.1126/science.1204592 pubmed: 21617040 pmcid: 3638014
Zheng G, Zhan Y, Li X et al (2018) TFEB, a potential therapeutic target for osteoarthritis via autophagy regulation. Cell Death Dis 9:858. https://doi.org/10.1038/s41419-018-0909-y
doi: 10.1038/s41419-018-0909-y pubmed: 30154423 pmcid: 6113230
Maimaitijuma T, Yu JH, Ren YL et al (2020) PHF23 negatively regulates the autophagy of chondrocytes in osteoarthritis. Life Sci 253:117750. https://doi.org/10.1016/j.lfs.2020.117750
doi: 10.1016/j.lfs.2020.117750 pubmed: 32380078
Hu PF, Chen WP, Bao JP, Wu LD (2018) Paeoniflorin inhibits IL-1beta-induced chondrocyte apoptosis by regulating the Bax/Bcl-2/caspase-3 signaling pathway. Mol Med Rep 17:6194–6200. https://doi.org/10.3892/mmr.2018.8631
doi: 10.3892/mmr.2018.8631 pubmed: 29484390
Chen J, Gu YT, Xie JJ et al (2018) Gastrodin reduces IL-1beta-induced apoptosis, inflammation, and matrix catabolism in osteoarthritis chondrocytes and attenuates rat cartilage degeneration in vivo. Biomed Pharmacother 97:642–651. https://doi.org/10.1016/j.biopha.2017.10.067
doi: 10.1016/j.biopha.2017.10.067 pubmed: 29101808
Lifeng Jiang KX, Li J, Zhou X, Langhai Xu, Zhipeng Wu, Ma C, Ran J, Pengfei Hu, Bao J, Lidong Wu, Xiong Y (2020) Nesfatin-1 suppresses interleukin-1β-induced inflammation, apoptosis, and cartilage matrix destruction in chondrocytes and ameliorates osteoarthritis in rats. Aging 12:1762–1777
Velard F, Chatron-Colliet A, Côme D et al (2020) Adrenomedullin and truncated peptide adrenomedullin(22–52) affect chondrocyte response to apoptotis in vitro: downregulation of FAS protects chondrocyte from cell death. Sci Rep 10:16740. https://doi.org/10.1038/s41598-020-73924-1
doi: 10.1038/s41598-020-73924-1 pubmed: 33028903 pmcid: 7541509
Uzan B, Ea HK, Launay JM et al (2006) A critical role for adrenomedullin-calcitonin receptor-like receptor in regulating rheumatoid fibroblast-like synoviocyte apoptosis. J Immunol 176:5548–5558. https://doi.org/10.4049/jimmunol.176.9.5548
doi: 10.4049/jimmunol.176.9.5548 pubmed: 16622024
Chosa E, Hamada H, Kitamura K et al (2003) Expression of adrenomedullin and its receptor by chondrocyte phenotype cells. Biochem Biophys Res Commun 303:379–386. https://doi.org/10.1016/s0006-291x(03)00347-4
doi: 10.1016/s0006-291x(03)00347-4 pubmed: 12646214
Yang L, Wang Z, Zou C, Mi Y, Tang H, Wu X (2020) Ubiquitin-specific protease 49 attenuates IL-1β-induced rat primary chondrocyte apoptosis by facilitating Axin deubiquitination and subsequent Wnt/β-catenin signaling cascade inhibition. Mol Cell Biochem 474:263–275. https://doi.org/10.1007/s11010-020-03850-3
doi: 10.1007/s11010-020-03850-3 pubmed: 32737772

Auteurs

Si-Qi Xiao (SQ)

Department of Rheumatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China.

Miao Cheng (M)

Department of Rheumatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China.

Lei Wang (L)

Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China.

Jing Cao (J)

Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China.

Liang Fang (L)

Department of Rheumatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China.

Xue-Ping Zhou (XP)

The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.

Xiao-Jin He (XJ)

Department of Rheumatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China. 260632@njucm.edu.cn.
Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China. 260632@njucm.edu.cn.

Yu-Feng Hu (YF)

The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China. 260569@njucm.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH