Large Artificial microRNA Cluster Genes Confer Effective Resistance against Multiple Tomato Yellow Leaf Curl Viruses in Transgenic Tomato.
TY1
artificial miRNA
mixed infection
resistance
tomato yellow leaf curl viruses
whitefly
Journal
Plants (Basel, Switzerland)
ISSN: 2223-7747
Titre abrégé: Plants (Basel)
Pays: Switzerland
ID NLM: 101596181
Informations de publication
Date de publication:
31 May 2023
31 May 2023
Historique:
received:
05
04
2023
revised:
22
05
2023
accepted:
29
05
2023
medline:
10
6
2023
pubmed:
10
6
2023
entrez:
10
6
2023
Statut:
epublish
Résumé
Tomato yellow leaf curl disease (TYLCD) has become the key limiting factor for the production of tomato in many areas because of the continuous infection and recombination of several tomato yellow leaf curl virus (TYLCV)-like species (TYLCLV) which produce novel and destructive viruses. Artificial microRNA (AMIR) is a recent and effective technology used to create viral resistance in major crops. This study applies AMIR technology in two ways, i.e., amiRNA in introns (AMINs) and amiRNA in exons (AMIEs), to express 14 amiRNAs targeting conserved regions in seven TYLCLV genes and their satellite DNA. The resulting pAMIN14 and pAMIE14 vectors can encode large AMIR clusters and their function in silencing reporter genes was validated with transient assays and stable transgenic
Identifiants
pubmed: 37299158
pii: plants12112179
doi: 10.3390/plants12112179
pmc: PMC10255879
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : National Natural Science Foundation of China
ID : 32272491
Références
Plant Cell. 2006 May;18(5):1121-33
pubmed: 16531494
Nat Biotechnol. 2006 Nov;24(11):1420-8
pubmed: 17057702
Plants (Basel). 2021 Jan 25;10(2):
pubmed: 33504044
Nat Rev Genet. 2005 Mar;6(3):206-20
pubmed: 15703763
Mol Plant Pathol. 2010 Jul;11(4):441-50
pubmed: 20618703
Transgenic Res. 2007 Jun;16(3):385-98
pubmed: 17103242
PLoS Pathog. 2018 Jan 2;14(1):e1006756
pubmed: 29293695
Virus Res. 2013 Mar;172(1-2):35-45
pubmed: 23276684
Mol Plant Pathol. 2008 Jan;9(1):73-83
pubmed: 18705886
Plant Cell. 2013 Jul;25(7):2400-15
pubmed: 23881411
Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12942-7
pubmed: 25136118
Nat Rev Immunol. 2010 Sep;10(9):632-44
pubmed: 20706278
Front Microbiol. 2017 Jan 23;8:43
pubmed: 28167936
FEBS Lett. 2005 Oct 31;579(26):5923-31
pubmed: 16144699
Mol Cell Biol. 2009 Oct;29(20):5632-8
pubmed: 19667074
Nature. 2004 Sep 16;431(7006):356-63
pubmed: 15372043
Cell. 2008 Apr 4;133(1):116-27
pubmed: 18342361
Front Microbiol. 2021 May 21;12:671925
pubmed: 34093492
Cell. 2008 Apr 4;133(1):128-41
pubmed: 18342362
Viruses. 2022 Dec 21;15(1):
pubmed: 36680066
Virus Res. 2016 Sep 2;223:99-107
pubmed: 27422476
Nucleic Acids Res. 1990 Oct 25;18(20):6069-74
pubmed: 2235490
Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15269-74
pubmed: 20643946
Curr Opin Plant Biol. 2007 Oct;10(5):503-11
pubmed: 17709279
J Virol. 2017 May 12;91(11):
pubmed: 28331089
J Virol. 2008 Nov;82(22):11084-95
pubmed: 18768978
Plant Cell. 2013 Jul;25(7):2383-99
pubmed: 23881412
Plant Biotechnol J. 2012 Feb;10(2):150-63
pubmed: 21895944
Plant J. 2019 Nov;100(4):720-737
pubmed: 31350772
Nat Struct Mol Biol. 2010 Aug;17(8):997-1003
pubmed: 20562854
Nat Methods. 2008 Jan;5(1):37-9
pubmed: 18037891
Plant Biotechnol J. 2020 Mar;18(3):608-610
pubmed: 31483917
Mol Cell. 2020 Apr 16;78(2):289-302.e6
pubmed: 32302541
Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20055-62
pubmed: 19066226
Phytopathology. 2009 Nov;99(11):1312-20
pubmed: 19821736
Transgenic Res. 2011 Jun;20(3):569-81
pubmed: 20835923
Plants (Basel). 2022 Aug 15;11(16):
pubmed: 36015429
Crit Rev Biotechnol. 2023 Jun;43(4):613-627
pubmed: 35469523