Technological advances in the use of viral and non-viral vectors for delivering genetic and non-genetic cargos for cancer therapy.
Cancer therapy
Cytotoxic payloads
Targeted drug delivery systems
Viruses
Journal
Drug delivery and translational research
ISSN: 2190-3948
Titre abrégé: Drug Deliv Transl Res
Pays: United States
ID NLM: 101540061
Informations de publication
Date de publication:
11 2023
11 2023
Historique:
accepted:
29
04
2023
medline:
3
10
2023
pubmed:
11
6
2023
entrez:
10
6
2023
Statut:
ppublish
Résumé
The burden of cancer is increasing globally. Several challenges facing its mainstream treatment approaches have formed the basis for the development of targeted delivery systems to carry and distribute anti-cancer payloads to their defined targets. This site-specific delivery of drug molecules and gene payloads to selectively target druggable biomarkers aimed at inducing cell death while sparing normal cells is the principal goal for cancer therapy. An important advantage of a delivery vector either viral or non-viral is the cumulative ability to penetrate the haphazardly arranged and immunosuppressive tumour microenvironment of solid tumours and or withstand antibody-mediated immune response. Biotechnological approaches incorporating rational protein engineering for the development of targeted delivery systems which may serve as vehicles for packaging and distribution of anti-cancer agents to selectively target and kill cancer cells are highly desired. Over the years, these chemically and genetically modified delivery systems have aimed at distribution and selective accumulation of drug molecules at receptor sites resulting in constant maintenance of high drug bioavailability for effective anti-tumour activity. In this review, we highlighted the state-of-the art viral and non-viral drug and gene delivery systems and those under developments focusing on cancer therapy.
Identifiants
pubmed: 37301780
doi: 10.1007/s13346-023-01362-3
pii: 10.1007/s13346-023-01362-3
pmc: PMC10257536
doi:
Substances chimiques
Antineoplastic Agents
0
Types de publication
Journal Article
Review
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2719-2738Subventions
Organisme : Medical Research Council
ID : MR/S016430/1
Pays : United Kingdom
Informations de copyright
© 2023. The Author(s).
Références
Ferlay J, Parkin DM, Colombet M, Soerjomataram I, Piñeros M, Znaor A, et al. Cancer statistics for the year 2020: an overview. Cancer Epidemiol. 2021;778–89
Damyanov CA, Maslev IK, Pavlov VS. Conventional treatment of cancer realities and problems. Ann Complement Altern Med. 2018;1:1–9.
Maeda H, Khatami M. Analyses of repeated failures in cancer therapy for solid tumors: poor tumor-selective drug delivery, low therapeutic efficacy and unsustainable costs. Clin Transl Med. Springer Berlin Heidelberg. 2018;7:1–20.
doi: 10.1186/s40169-018-0185-6
Alfarouk KO, Stock CM, Taylor S, Walsh M, Muddathir AK, Verduzco D, et al. Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp. Cancer Cell Int BioMed Central. 2015;15:1–13.
doi: 10.1186/s12935-015-0221-1
Kim JM, Shin E, Ryou SM, Yeom JH, Lee K. Gene delivery platforms. Biotechnol. Bioprocess Eng. 2013;18:637–47.
Jain KK. Drug delivery systems. In: Jain KK, Walker JM, editors. Methods Mol. Biol. Basel: Humana Press; 2008.
Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol. 2019;71:1185–98.
pubmed: 31049986
doi: 10.1111/jphp.13098
Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 2018;3:1–19.
doi: 10.1038/s41392-017-0004-3
Hill AB, Chen M, Chen C-K, Pfeifer BA, Jones CH. Overcoming gene delivery hurdles: physiological considerations for nonviral vectors. Trends Biotechnol. 2017;176:139–48.
Krotova K, Day A, Aslanidi G. An engineered AAV6-based vaccine induces high cytolytic anti-tumor activity by directly targeting DCs and improves Ag presentation. Mol Ther Oncolytics. Elsevier Ltd. 2019;15:166–77.
pubmed: 31720373
pmcid: 6838889
doi: 10.1016/j.omto.2019.10.001
Pandya M, Britt K, Hoffman B, Ling C, George V, Science C. Vectors for immunotherapy of cancer. 2016;38:292–8.
Pandya J, Ortiz L, Ling C, Rivers AE, Aslanidi G. Rationally designed capsid and transgene cassette of AAV6 vectors for dendritic cell-based cancer immunotherapy. Immunol Cell Biol. 2014;92:116–23.
pubmed: 24217810
doi: 10.1038/icb.2013.74
Young JG, Green NK, Mautner V, Searle PF, Young LS, James ND. Combining gene and immunotherapy for prostate cancer. Prostate Cancer Prostatic Dis. 2008;11:187–93.
pubmed: 17726452
doi: 10.1038/sj.pcan.4501008
Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun. Springer US; 2018;9.
Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–92.
pubmed: 2946403
Andrieux K, Nicolas J, Moine L, Barratt G. Polymeric nanoparticles for drug delivery. In: Stephen RG, Brij MM, editors. Polym. Biomater. Med. Pharm. Appl, vol. 2. London: Humana Press; 2013.
Strittmatter N, England RM, Race AM, Sutton D, Moss JI, Maglennon G, et al. Method to investigate the distribution of water-soluble drug-delivery systems in fresh frozen tissues using imaging mass cytometry. Anal Chem. 2021;93:3742–9.
pubmed: 33606520
doi: 10.1021/acs.analchem.0c03908
Hansen AE, Petersen AL, Henriksen JR, Boerresen B, Rasmussen P, Elema DR, et al. Positron emission tomography based elucidation of the enhanced permeability and retention effect in dogs with cancer using copper-64 liposomes. 2015;6985–95.
Nakamura Y, Mochida A, Choyke PL, Kobayashi H. Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug Chem. 2016;27:2225–38.
pubmed: 27547843
pmcid: 7397928
doi: 10.1021/acs.bioconjchem.6b00437
Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1.
Sindhwani S, Syed AM, Ngai J, Kingston BR, Maiorino L, Rothschild J, et al. The entry of nanoparticles into solid tumours. Nat Mater. Springer US; 2020;19.
Capra E, Godfrey A, Loche A, Smith J. Gene-therapy innovation: unlocking the promise of viral vectors. 2021;1–19.
Ghosh S, Banerjee M. A smart viral vector for targeted delivery of hydrophobic drugs. Sci Rep. 2021;11:1–11. Nature Publishing Group UK
doi: 10.1038/s41598-021-86198-y
Zhao Z, Anselmo AC, Mitragotri S. Viral vector-based gene therapies in the clinic. Bioeng Transl Med. 2021.
Zu H, Gao D. Non-viral vectors in gene therapy: recent development, challenges, and prospects. AAPS J. Springer Science and Business Media Deutschland GmbH; 2021.
Vargason AM, Anselmo AC, Mitragotri S. The evolution of commercial drug delivery technologies. Nat Biomed Eng. Springer US; 2021;5.
Rodriguez-Devora J, Ambure S, Shi Z-D, Yuan Y, Sun W, Xu T. Physically facilitating drug-delivery systems. 2012;3:125–39.
Bruckman MA, Czapar AE, VanMeter A, Randolph LN, Steinmetz NF. Tobacco mosaic virus-based protein nanoparticles and nanorods for chemotherapy delivery targeting breast cancer. J Control Release. 2016;231:103–13. Elsevier B.V.
pubmed: 26941034
pmcid: 5207211
doi: 10.1016/j.jconrel.2016.02.045
Zabaleta N, Dai W, Bhatt U, Hérate C, Maisonnasse P, Chichester JA, et al. An AAV-based, room-temperature-stable, single-dose COVID-19 vaccine provides durable immunogenicity and protection in non-human primates. Cell Host Microbe. 2021;29:1437–1453.e8.
pubmed: 34428428
pmcid: 8346325
doi: 10.1016/j.chom.2021.08.002
Qian C, Liu X, Xu Q, Wang Z, Chen J, Li T, et al. Recent progress on the versatility of virus-like particles. Vaccines. 2020;8:1–14.
doi: 10.3390/vaccines8010139
Varanda C, Campos MD. An overview of the application of viruses to biotechnology. Viruses. 2021;13–8.
Cerullo V, Ylo E. Design and application of oncolytic viruses for cancer immunotherapy. Curr Opin Biotechnol. 2019.
Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther. Springer US; 2021;6.
Waehler R, Russell SJ, Curiel DT. Engineering targeted viral vectors for gene therapy. Nat Rev Genet. 2007;8:573–87.
pubmed: 17607305
pmcid: 7097627
doi: 10.1038/nrg2141
Friedmann T. A brief history of gene therapy. Nat Genet. 1998;2:93–7.
doi: 10.1038/ng1092-93
Mateu MG. Virus engineering: functionalization and stabilization. Protein Eng Des Sel. 2011;24:53–63.
pubmed: 20923881
doi: 10.1093/protein/gzq069
Hajeri PB, Sharma NS, Yamamoto M. Oncolytic adenoviruses: strategies for improved targeting and specificity. Cancers (Basel). 2020;12:1–26.
doi: 10.3390/cancers12061504
Hemminki O, Dos Santos JM, Hemminki A. Oncolytic viruses for cancer immunotherapy. J Hematol Oncol. 2020;13:1–15.
doi: 10.1186/s13045-020-00922-1
Zheng M, Huang J, Tong A, Yang H. Oncolytic viruses for cancer therapy: barriers and recent advances. Mol Ther Oncolytics. The Author(s). 2019;15:234–47.
pubmed: 31872046
pmcid: 6911943
doi: 10.1016/j.omto.2019.10.007
Wang H, Li Z, Liu Y, Persson J, Beyer I, Möller T, et al. Desmoglein 2 is a receptor for adenovirus serotypes 3, 7, 11, and 14. Nat Med. 2011;17:96–104.
pubmed: 21151137
doi: 10.1038/nm.2270
Ni S, Bernt K, Gaggar A, Li ZY, Kiem HP, Lieber A. Evaluation of biodistribution and safety of adenovirus vectors containing group B fibers after intravenous injection into baboons. Hum Gene Ther. 2005;16:664–77.
pubmed: 15960598
doi: 10.1089/hum.2005.16.664
Mach N, Gao J, Schaffarczyk L, Janz S, Ehrke-Schulz E, Dittmar T, et al. Spectrum-wide exploration of human adenoviruses for breast cancer therapy. Cancers (Basel). 2020;12:1–18.
doi: 10.3390/cancers12061403
Macedo N, Miller DM, Haq R, Kaufman HL. Clinical landscape of oncolytic virus research in 2020. J Immunother Cancer. 2020;8.
Sangro B, Mazzolini G, Ruiz J, Herraiz M, Quiroga J, Herrero I, et al. Phase I trial of intratumoral injection of an adenovirus encoding interleukin-12 for advanced digestive tumors. J Clin Oncol. 2004;22:1389–97.
pubmed: 15084613
doi: 10.1200/JCO.2004.04.059
Li S, Wang F, Zhai Z, Fu S, Lu J, Zhang H, et al. Synergistic effect of bladder cancer-specific oncolytic adenovirus in combination with chemotherapy. Oncol Lett. 2017;2081–2088.
Lee CS, Bishop ES, Zhang R, Yu X, Farina EM, Yan S, et al. Adenovirus-mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis. 2017;4:43–63.
pubmed: 28944281
pmcid: 5609467
doi: 10.1016/j.gendis.2017.04.001
Milone MC, O’Doherty U. Clinical use of lentiviral vectors. Leukemia. Springer US. 2018;32:1529–41.
pubmed: 29654266
pmcid: 6035154
doi: 10.1038/s41375-018-0106-0
Elizalde N, Ramírez JC. Lentiviral vectors: key challenges and new developments. Cell Gene Ther Insights. 2021;7:667–77.
doi: 10.18609/cgti.2021.002
Friedel T, Hanisch LJ, Muth A, Honegger A, Abken H, Plückthun A, et al. Receptor-targeted lentiviral vectors are exceptionally sensitive toward the biophysical properties of the displayed single-chain Fv. Protein Eng Des Sel. 2015;28:93–105.
pubmed: 25715658
doi: 10.1093/protein/gzv005
Bayin NS, Modrek AS, Dietrich A, Lebowitz J, Abel T, Song HR, et al. Selective lentiviral gene delivery to CD133-expressing human glioblastoma stem cells. PLoS One. 2014;9:1–22.
doi: 10.1371/journal.pone.0116114
Abel T, Filali EE, Waern J, Schneider IC, Yuan Q, Münch RC, et al. Specific gene delivery to liver sinusoidal & artery endothelial cells. Blood. 2013;122:2030–8.
pubmed: 23884859
doi: 10.1182/blood-2012-11-468579
Banskota S, Raguram A, Suh S, Musunuru K, Palczewski K, Liu DR, et al. Article engineered virus-like particles for efficient in vivo delivery of therapeutic proteins ll ll engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell. The Author(s). 2022;185:250–265.e16.
pubmed: 35021064
pmcid: 8809250
doi: 10.1016/j.cell.2021.12.021
Wang Y, Li S, Tian Z, Sun J, Liang S, Zhang B, et al. Generation of a caged lentiviral vector through an unnatural amino acid for photo-switchable transduction. Nucleic Acids Res. Oxford University Press. 2019;47:e114.
pubmed: 31361892
pmcid: 6821241
doi: 10.1093/nar/gkz659
Kaczmarczyk SJ, Sitaraman K, Young HA, Hughes SH, Chatterjee DK. Protein delivery using engineered virus-like particles. Proc Natl Acad Sci U S A. 2011;108:16998–7003.
pubmed: 21949376
pmcid: 3193192
doi: 10.1073/pnas.1101874108
Naso MF, Tomkowicz B, Perry WL, Strohl WR. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs. Springer International Publishing. 2017;31:317–34.
pubmed: 28669112
pmcid: 5548848
doi: 10.1007/s40259-017-0234-5
Daya S, Berns KI. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev. 2008;21:583–93.
pubmed: 18854481
pmcid: 2570152
doi: 10.1128/CMR.00008-08
Bryant DH, Bashir A, Sinai S, Jain NK, Ogden PJ, Riley PF, et al. Deep diversification of an AAV capsid protein by machine learning. Nat Biotechnol. Springer US. 2021;39:691–6.
pubmed: 33574611
doi: 10.1038/s41587-020-00793-4
Samulski RJ, Muzyczka N. AAV-mediated gene therapy for research and therapeutic purposes. Annu Rev Virol. 2014;1:427–51.
pubmed: 26958729
doi: 10.1146/annurev-virology-031413-085355
Xie Q, Bu W, Bhatia S, Hare J, Somasundaram T, Azzi A, et al. The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc Natl Acad Sci U S A. 2002;99:10405–10.
pubmed: 12136130
pmcid: 124927
doi: 10.1073/pnas.162250899
Lian F, Ye Q, Feng B, Cheng H, Niu S, Fan N, et al. rAAV9-UPII-TK-EGFP can precisely transduce a suicide gene and inhibit the growth of bladder tumors bladder tumors. Cancer Biol Ther. Taylor & Francis. 2020;21:1171–8.
pubmed: 33218277
pmcid: 7722787
doi: 10.1080/15384047.2020.1844115
Pan JG, Zhou X, Luo R, Han RF. The adeno-associated virus-mediated HSV-TK / GCV suicide system: a potential strategy for the treatment of bladder carcinoma. Med Oncol. 2012;1938–47.
Flotte TR. Size does matter: overcoming the adeno-associated virus packaging limit. Respir Res. 2000;1:16–8.
pubmed: 11667959
pmcid: 59536
doi: 10.1186/rr6
Grataitong K, Huault S, Chotwiwatthanakun C, Jariyapong P, Thongsum O, Chawiwithaya C, et al. Chimeric virus-like particles (VLPs) designed from shrimp nodavirus (MrNV) capsid protein specifically target EGFR-positive human colorectal cancer cells. Sci Rep. Nature Publishing Group UK. 2021;11:1–11.
doi: 10.1038/s41598-021-95891-x
Verlengia G, Miyagawa Y, Ingusci S, Cohen JB, Simonato M, Glorioso JC. Engineered HSV vector achieves safe long-term transgene expression in the central nervous system. Sci Rep. Springer US. 2017;7:1–11.
doi: 10.1038/s41598-017-01635-1
Miyagawa Y, Marino P, Verlengia G, Uchida H, Goins WF, Yokota S, et al. Herpes simplex viral-vector design for efficient transduction of nonneuronal cells without cytotoxicity. Proc Natl Acad Sci U S A. 2015;112:E1632–41.
pubmed: 25775541
pmcid: 4386379
doi: 10.1073/pnas.1423556112
Palmer JA, Branston RH, Lilley CE, Robinson MJ, Groutsi F, Smith J, et al. Development and optimization of herpes simplex virus vectors for multiple long-term gene delivery to the peripheral nervous system. J Virol. 2000;74:5604–18.
pubmed: 10823868
pmcid: 112048
doi: 10.1128/JVI.74.12.5604-5618.2000
Haddad AF, Young JS, Aghi MK. Using viral vectors to deliver local immunotherapy to glioblastoma. Neurosurg Focus. 2021;50:1–7.
doi: 10.3171/2020.11.FOCUS20859
Mody PH, Pathak S, Hanson LK, Spencer JV. Herpes simplex virus: a versatile tool for insights into evolution, gene delivery, and tumor immunotherapy. Virol Res Treat. 2020;11:1178122X2091327.
doi: 10.1177/1178122X20913274
Shekarian T, Sivado E, Jallas AC, Depil S, Kielbassa J, Janoueix-Lerosey I, et al. Repurposing rotavirus vaccines for intratumoral immunotherapy can overcome resistance to immune checkpoint blockade. Sci Transl Med. 2019;11.
Guerrero CA, Guerrero RA, Silva E, Acosta O, Barreto E. Experimental adaptation of rotaviruses to tumor cell lines. PLoS One. 2016;11:1–25.
doi: 10.1371/journal.pone.0147666
Shi X, Fang G, Shi W, Bartlett JS. Insertional mutagenesis at positions 520 and 584 of adeno-associated virus type 2 (AAV2) capsid gene and generation of AAV2 vectors with eliminated heparin-binding ability and introduced novel tropism. Hum Gene Ther. 2006;17:353–61.
pubmed: 16544984
doi: 10.1089/hum.2006.17.353
Kern A, Schmidt K, Leder C, Müller OJ, Wobus CE, Bettinger K, et al. Identification of a heparin-binding motif on adeno-associated virus type 2 capsids. J Virol. 2003;77:11072–81.
pubmed: 14512555
pmcid: 224995
doi: 10.1128/JVI.77.20.11072-11081.2003
Yan Z, Zak R, Luxton GWG, Ritchie TC, Bantel-Schaal U, Engelhardt JF. Ubiquitination of both adeno-associated virus type 2 and 5 capsid proteins affects the transduction efficiency of recombinant vectors. J Virol. 2002;76:2043–53.
pubmed: 11836382
pmcid: 135943
doi: 10.1128/jvi.76.5.2043-2053.2002
Duan D, Yang J, Engelhardt JF, Duan D, Yue Y, Yan Z, et al. Endosomal processing limits gene transfer to polarized airway epithelia by adeno-associated virus find the latest version: endosomal processing limits gene transfer to polarized airway epithelia by adeno-associated virus. 2000;105:1573–87.
Münch RC, Janicki H, Völker I, Rasbach A, Hallek M, Büning H, et al. Displaying high-affinity ligands on adeno-associated viral vectors enables tumor cell-specific and safe gene transfer. Mol Ther. 2013;21:109–18.
pubmed: 22968478
doi: 10.1038/mt.2012.186
Warrington KH, Gorbatyuk OS, Harrison JK, Opie SR, Zolotukhin S, Muzyczka N. Adeno-associated virus type 2 VP2 capsid protein is nonessential and can tolerate large peptide insertions at its N terminus. J Virol. 2004;78:6595–609.
pubmed: 15163751
pmcid: 416546
doi: 10.1128/JVI.78.12.6595-6609.2004
Girod A, Ried M, Wobus C, Lahm H, Leike K, Kleinschmidt J, et al. Genetic capsid modifications allow efficient re-targeting of adeno- associated virus type 2. Nat Med. 1999;5:1052–6.
pubmed: 10470084
doi: 10.1038/12491
Koerber JT, Jang JH, Yu JH, Kane RS, Schaffer DV. Engineering adeno-associated virus for one-step purification via immobilized metal affinity chromatography. Hum Gene Ther. 2007;18:367–78.
pubmed: 17437357
doi: 10.1089/hum.2006.139
Zhao H, Lee KJ, Daris M, Lin Y, Wolfe T, Sheng J, et al. Creation of a high-yield AAV vector production platform in suspension cells using a design-of-experiment approach. Mol Ther Methods Clin Dev. Elsevier Ltd. 2020;18:312–20.
pubmed: 32671134
pmcid: 7334306
doi: 10.1016/j.omtm.2020.06.004
White K, Büning H, Kritz A, Janicki H, McVey J, Perabo L, et al. Engineering adeno-associated virus 2 vectors for targeted gene delivery to atherosclerotic lesions. Gene Ther. 2008;15:443–51.
pubmed: 18004401
doi: 10.1038/sj.gt.3303077
Korneyenkov MA, Zamyatnin AA. Next step in gene delivery: modern approaches and further perspectives of aav tropism modification. Pharmaceutics. 2021;13:1–16.
doi: 10.3390/pharmaceutics13050750
Boucas J, Lux K, Schievenbusch S, John von Freyend M, Perbo L, Quadt-Humme S, et al. Engineering adeno-associated virus serotype 2-based targeting vectors using a new insertion site-position 453-and single point mutations. J Gene Med. 2009;14:44–53.
Mével M, Bouzelha M, Leray A, Pacouret S, Guilbaud M, Penaud-Budloo M, et al. Chemical modification of the adeno-associated virus capsid to improve gene delivery. Chem Sci. 2020;11:1122–31.
doi: 10.1039/C9SC04189C
Wei F, Mc CKI, Yu TK, Suh J. Conjugation of paclitaxel on adeno-associated virus (AAV) nanoparticles for co-delivery of genes and drugs. Eur J Pharm Sci. Elsevier B.V. 2012;46:167–72.
pubmed: 22406091
doi: 10.1016/j.ejps.2012.02.022
Devaraj NK, Finn MG. Introduction: click chemistry. Chem Rev. 2021;6697–8.
Katrekar D, Moreno AM, Chen G, Worlikar A, Mali P. Oligonucleotide conjugated multi-functional adeno-associated viruses. Sci Rep. Springer US. 2018;8:1–8.
doi: 10.1038/s41598-018-21742-x
Liu Y, Fang Y, Zhou Y, Zandi E, Lee C-L, Joo K-I, et al. Site-specific modification of adeno-associated viruses via a genetically engineered aldehyde Tag.pdf. Los Angelos; 2013.
Rodriguez AL, Wang TY, Bruggeman KF, Li R, Williams RJ, Parish CL, et al. Tailoring minimalist self-assembling peptides for localized viral vector gene delivery. Nano Res. 2016;9:674–84.
doi: 10.1007/s12274-015-0946-0
Piras BA, Drury JE, Morton CL, Spence Y, Lockey TD, Nathwani AC, et al. Distribution of AAV8 particles in cell lysates and culture media changes with time and is dependent on the recombinant vector. Mol Ther Methods Clin Dev. 2016;3:16015.
pubmed: 27069949
pmcid: 4813606
doi: 10.1038/mtm.2016.15
Heuser C, Stefan G, Alexander M, Hans B, Barth S, Diehl V, et al. Anti-CD30-scFv-Fc-IL-2 antibody-cytokine fusion protein that induces resting NK.pdf. Int J Cancer. 2004.
Pearce HA, Qian H, Connell TU, Huang D, Gottstein C, Donnelly PS, et al. Site-specific glycation and chemo-enzymatic antibody sortagging for the retargeting of rAAV6 to inflamed endothelium. Mol Ther Methods Clin Dev. Elsevier Ltd. 2019;14:261–9.
pubmed: 31453264
pmcid: 6704353
doi: 10.1016/j.omtm.2019.07.003
Kelemen RE, Mukherjee R, Cao X, Erickson SB, Zheng Y, Chatterjee A. A precise chemical strategy to alter the receptor specificity of the adeno-associated virus. Angew Chem Int Ed. 2016;55:10645–9.
doi: 10.1002/anie.201604067
Goswami R, Subramanian G, Silayeva L, Newkirk I, Doctor D, Chawla K, et al. Gene therapy leaves a vicious cycle. Front Oncol. 2019;9:1–25.
doi: 10.3389/fonc.2019.00297
Lieser RM, Yur D, Sullivan MO, Chen W. Site-specific bioconjugation approaches for enhanced delivery of protein therapeutics and protein drug carriers. Bioconjug Chem. 2020;31:2272–82.
pubmed: 32931255
doi: 10.1021/acs.bioconjchem.0c00456
Wang Y, Bruggeman KF, Franks S, Gautam V, Hodgetts SI, Harvey AR, et al. Is viral vector gene delivery more effective Using biomaterials? Adv Healthc Mater. 2021;10:1–25.
Nakao S, Arai Y, Tasaki M, Yamashita M, Murakami R, Kawase T, et al. Intratumoral expression of IL-7 and IL-12 using an oncolytic virus increases systemic sensitivity to immune checkpoint blockade. Sci Transl Med. 2020;12:1–14.
doi: 10.1126/scitranslmed.aax7992
Li H, Zhang FL, Shi WJ, Bai XJ, Jia SQ, Zhang CG, et al. Immobilization of FLAG-tagged recombinant adeno-associated virus 2 onto tissue engineering scaffolds for the improvement of transgene delivery in cell transplants. PLoS One. 2015;10:1–15.
Muik A, Reul J, Friedel T, Muth A, Hartmann KP, Schneider IC, et al. Biomaterials covalent coupling of high-affinity ligands to the surface of viral vector particles by protein trans-splicing mediates cell type-specific gene transfer. Biomaterials. Elsevier Ltd. 2017;144:84–94.
pubmed: 28825979
doi: 10.1016/j.biomaterials.2017.07.032
Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet. Nature Publishing Group. 2014;15:541–55.
pubmed: 25022906
doi: 10.1038/nrg3763
Dzuvor CKO, Tettey EL, Danquah MK. Aptamers as promising nanotheranostic tools in the COVID-19 pandemic era. Nanomedicine and Nanobiotechnology. 2022;e1785.
Pan X, Veroniaina H, Su N, Sha K, Jiang F, Wu Z, et al. Applications and developments of gene therapy drug delivery systems for genetic diseases. Asian J Pharm Sci. Elsevier B.V.; 2021.
Santana-Armas ML, Tros de Ilarduya C. Strategies for cancer gene-delivery improvement by non-viral vectors. Int J Pharm. 2021;596:120291.
pubmed: 33524527
doi: 10.1016/j.ijpharm.2021.120291
Picanço-Castro V., Pereira CG, Covas DT, Porto GS, Athanassiadou A, Figueiredo ML. Emerging patent landscape for non-viral vectors used for gene therapy. Nat Biotechnol. 2020;2.
Ramamoorth M, Narvekar A. Non viral vectors in gene therapy - an overview. J Clin Diagn Res. 2015. p. GE01–6.
Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR. Gene therapy clinical trials worldwide to 2017: an update. J Gene Med. 2018;20:e3015. https://onlinelibrary.wiley.com/doi/abs/10.1002/jgm.3015
pubmed: 29575374
doi: 10.1002/jgm.3015
Meacham JM, Durvasula K, Degertekin FL, Fedorov AG. Physical methods for intracellular delivery: practical aspects from laboratory use to industrial-scale processing. J Lab Autom. 2014;19:1–18.
pubmed: 23813915
doi: 10.1177/2211068213494388
Kavanagh H, Dunne S, Martin DS, Mcfadden E, Gallagher L, Dea SO, et al. A novel non-viral delivery method that enables efficient engineering of primary human T cells for ex vivo cell therapy applications. 2021;23:852–60.
Azarnezhad A, Samadian H, Jaymand M, Sobhani M, Ahmadi A. Toxicological profile of lipid-based nanostructures: are they considered as completely safe nanocarriers? Crit Rev Toxicol. Taylor & Francis. 2020;50:148–76.
pubmed: 32053030
doi: 10.1080/10408444.2020.1719974
Stewart MP, Langer R, Jensen KF. Intracellular delivery by membrane disruption: mechanisms, strategies, and concepts. Methods Mol Biol. 2019;176:139–48.
Roma-rodrigues C, Rivas-garc L, Baptista P V, Fernandes AR. Gene therapy in cancer treatment: why go nano? 2020.
Wirth T, Ylä-Herttuala S. Gene therapy used in cancer treatment. Biomedicines. 2014;2:149–62.
pubmed: 28548065
pmcid: 5423469
doi: 10.3390/biomedicines2020149
Chen X, Zaro JL, Shen WC. Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. Elsevier B.V. 2013;65:1357–69.
pubmed: 23026637
doi: 10.1016/j.addr.2012.09.039
Sainz-ramos M, Gallego I, Villate-beitia I, Zarate J, Maldonado I, Puras G, et al. How far are non-viral vectors to come of age and reach clinical translation in gene therapy? Int J Mol Sci. 2021;22.
Hald Albertsen C, Kulkarni JA, Witzigmann D, Lind M, Petersson K, Simonsen JB. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv Drug Deliv Rev. Netherlands. 2022;188:114416.
pubmed: 35787388
pmcid: 9250827
doi: 10.1016/j.addr.2022.114416
Bangham AD. Physical structure and behavior of lipids and lipid enzymes. 1963;65–104.
Duzgunes N, Gregoriadis G. Introduction: the origins of liposomes: Alec Bangham at Babraham. Methods Enzymol. 2005;391:1–3.
doi: 10.1016/S0076-6879(05)91029-X
Bozzuto G, Molinari A. Liposomes as nanomedical devices. 2015;975–99.
Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: structure, composition, types, and clinical applications. Heliyon. England. 2022;8:e09394.
pubmed: 35600452
pmcid: 9118483
doi: 10.1016/j.heliyon.2022.e09394
Olusanya T, Haj Ahmad R, Ibegbu D, Smith J, Elkordy A. Liposomal drug delivery systems and anticancer drugs. Molecules. 2018;23:907.
pubmed: 29662019
pmcid: 6017847
doi: 10.3390/molecules23040907
Thanh T, Thi H, Suys EJA, Lee JS, Nguyen DH, Park KD, et al. Lipid-based nanoparticles in the clinic and clinical trials: from cancer nanomedicine to COVID-19 vaccines. Vaccines. 2021;1–31.
Nature Reviews Materials. Let’s talk about lipid nanoparticles. Nat Rev Mater. 2021;6:99. https://www.nature.com/articles/s41578-021-00281-4
doi: 10.1038/s41578-021-00281-4
Schlich M, Palomba R, Costabile G, Mizrahy S, Pannuzzo M, Peer D, et al. Cytosolic delivery of nucleic acids: the case of ionizable lipid nanoparticles. 2021;1–16.
Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. Netherlands. 2016;99:28–51.
pubmed: 26456916
doi: 10.1016/j.addr.2015.09.012
Al-Dosari MS, Gao X. Nonviral gene delivery: principle, limitations, and recent progress. AAPS J. 2009;11:671.
pubmed: 19834816
pmcid: 2782077
doi: 10.1208/s12248-009-9143-y
Kaneda Y, Tabata Y. Non-viral vectors for cancer therapy. Cancer Sci. 2006;97:348–54.
pubmed: 16630130
doi: 10.1111/j.1349-7006.2006.00189.x
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8:102.
pubmed: 23432972
pmcid: 3599573
doi: 10.1186/1556-276X-8-102
Yingchoncharoen P, Kalinowski DS, Richardson DR. Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharmacol Rev. 2016;68:701–87.
pubmed: 27363439
pmcid: 4931871
doi: 10.1124/pr.115.012070
Allen TM, Cheng WWK, Hare JI, Laginha KM. Pharmacokinetics and pharmacodynamics of lipidic nano-particles in cancer. Anti Cancer Agents Med Chem. 2006;6:513–23.
doi: 10.2174/187152006778699121
Beltrán-Gracia E, López-Camacho A, Higuera-Ciapara I, Velázquez-Fernández JB, Vallejo-Cardona AA. Nanomedicine review: clinical developments in liposomal applications. Cancer Nanotechnol. 2019;10:11.
doi: 10.1186/s12645-019-0055-y
Barenholz Y. (Chezy). Doxil® — the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160:117–34.
pubmed: 22484195
doi: 10.1016/j.jconrel.2012.03.020
Wu Y, Crawford M, Mao Y, Lee RJ, Davis IC, Elton TS, et al. Therapeutic delivery of microRNA-29b by cationic lipoplexes for lung cancer. Mol Ther Nucleic Acids. 2013;2:e84.
pubmed: 23591808
pmcid: 3650246
doi: 10.1038/mtna.2013.14
He Z-Y, Deng F, Wei X-W, Ma C-C, Luo M, Zhang P, et al. Ovarian cancer treatment with a tumor-targeting and gene expression-controllable lipoplex. Sci Rep. 2016;6:23764.
pubmed: 27026065
pmcid: 4824455
doi: 10.1038/srep23764
Zhang R, Men K, Zhang X, Huang R, Tian Y, Zhou B, et al. Delivery of a Modified mRNA encoding IL-22 binding protein (IL-22BP) for colon cancer gene therapy. J Biomed Nanotechnol. 2018;14:1239–51.
pubmed: 29944098
doi: 10.1166/jbn.2018.2577
Andey T, Bora-Singhal N, Chellappan SP, Singh M. Cationic lipoplexes for treatment of cancer stem cell-derived murine lung tumors. Nanomedicine Nanotechnology, Biol Med. 2019;18:31–43.
Fehring V, Schaeper U, Ahrens K, Santel A, Keil O, Eisermann M, et al. Delivery of therapeutic siRNA to the lung endothelium via novel lipoplex formulation DACC. Mol Ther. 2014;22:811–20.
pubmed: 24390281
pmcid: 3982492
doi: 10.1038/mt.2013.291
Leite Nascimento T, Hillaireau H, Vergnaud J, Rivano M, Deloménie C, Courilleau D, et al. Hyaluronic acid-conjugated lipoplexes for targeted delivery of siRNA in a murine metastatic lung cancer model. Int J Pharm. 2016;514:103–11.
pubmed: 27863652
doi: 10.1016/j.ijpharm.2016.06.125
Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci. India. 2009;71:349–58.
pubmed: 20502539
pmcid: 2865805
doi: 10.4103/0250-474X.57282
Kaur T, Slavcev R. Solid lipid nanoparticles: tuneable anti-cancer gene/drug delivery systems. In: Wei M, Good D, editors. Nov Gene Ther Approaches. Rijeka: IntechOpen; 2013. https://doi.org/10.5772/54781 .
doi: 10.5772/54781
Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull. Iran. 2015;5:305–13.
pubmed: 26504751
pmcid: 4616893
doi: 10.15171/apb.2015.043
Thatipamula R, Palem C, Gannu R, Mudragada S, Yamsani M. Formulation and in vitro characterization of domperidone loaded solid lipid nanoparticles and nanostructured lipid carriers. Daru. Switzerland. 2011;19:23–32.
pubmed: 22615636
pmcid: 3232070
Liu D, Liu Z, Wang L, Zhang C, Zhang N. Nanostructured lipid carriers as novel carrier for parenteral delivery of docetaxel. Colloids Surfaces B Biointerfaces. 2011;85:262–9. https://www.sciencedirect.com/science/article/pii/S0927776511001184
pubmed: 21435845
doi: 10.1016/j.colsurfb.2011.02.038
Haider M, Abdin SM, Kamal L, Orive G. Nanostructured lipid carriers for delivery of chemotherapeutics: a review. Pharmaceutics. Switzerland; 2020;12.
Zhang X-G, Miao J, Dai Y-Q, Du Y-Z, Yuan H, Hu F-Q. Reversal activity of nanostructured lipid carriers loading cytotoxic drug in multi-drug resistant cancer cells. Int J Pharm. 2008;361:239–44. https://www.sciencedirect.com/science/article/pii/S0378517308004377
pubmed: 18586075
doi: 10.1016/j.ijpharm.2008.06.002
Wang Y, Zhang H, Hao J, Li B, Li M, Xiuwen W. Lung cancer combination therapy: co-delivery of paclitaxel and doxorubicin by nanostructured lipid carriers for synergistic effect. Drug Deliv. Taylor & Francis. 2016;23:1398–403. https://doi.org/10.3109/10717544.2015.1055619 .
doi: 10.3109/10717544.2015.1055619
pubmed: 26079530
Abdolahpour S, Toliyat T, Omidfar K, Modjtahedi H, Wong AJ, Rasaee MJ, et al. Targeted delivery of doxorubicin into tumor cells by nanostructured lipid carriers conjugated to anti-EGFRvIII monoclonal antibody. Artif Cells, Nanomedicine, Biotechnol. Taylor & Francis. 2018;46:89–94. https://doi.org/10.1080/21691401.2017.1296847 .
doi: 10.1080/21691401.2017.1296847
Sun M, Nie S, Pan X, Zhang R, Fan Z, Wang S. Quercetin-nanostructured lipid carriers: characteristics and anti-breast cancer activities in vitro. Colloids Surf B: Biointerfaces. 2014;113:15–24. https://www.sciencedirect.com/science/article/pii/S0927776513005493
pubmed: 24060926
doi: 10.1016/j.colsurfb.2013.08.032
How CW, Rasedee A, Manickam S, Rosli R. Tamoxifen-loaded nanostructured lipid carrier as a drug delivery system: characterization, stability assessment and cytotoxicity. Colloids Surf B: Biointerfaces. 2013;112:393–9. https://www.sciencedirect.com/science/article/pii/S0927776513005146
pubmed: 24036474
doi: 10.1016/j.colsurfb.2013.08.009
Yang J, Ju Z, Dong S. Cisplatin and paclitaxel co-delivered by folate-decorated lipid carriers for the treatment of head and neck cancer. Drug Deliv. Taylor & Francis. 2017;24:792–9. https://doi.org/10.1080/10717544.2016.1236849 .
doi: 10.1080/10717544.2016.1236849
pmcid: 8241145
Xu F, Liao J-Z, Xiang G-Y, Zhao P-X, Ye F, Zhao Q, et al. MiR-101 and doxorubicin codelivered by liposomes suppressing malignant properties of hepatocellular carcinoma. Cancer Med. United States. 2017;6:651–61.
pubmed: 28135055
pmcid: 5345655
doi: 10.1002/cam4.1016
Piao L, Zhang M, Datta J, Xie X, Su T, Li H, et al. Lipid-based nanoparticle delivery of Pre-miR-107 inhibits the tumorigenicity of head and neck squamous cell carcinoma. Mol Ther. United States. 2012;20:1261–9.
pubmed: 22491216
pmcid: 3369300
doi: 10.1038/mt.2012.67
Rai K, Takigawa N, Ito S, Kashihara H, Ichihara E, Yasuda T, et al. Liposomal delivery of microRNA-7–expressing plasmid overcomes epidermal growth factor receptor tyrosine kinase inhibitor-resistance in lung cancer cells. Mol Cancer Ther. 2011;10:1720–7. https://doi.org/10.1158/1535-7163.MCT-11-0220 .
doi: 10.1158/1535-7163.MCT-11-0220
pubmed: 21712475
Pramanik D, Campbell NR, Karikari C, Chivukula R, Kent OA, Mendell JT, et al. Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Mol Cancer Ther. United States. 2011;10:1470–80.
pubmed: 21622730
pmcid: 3154495
doi: 10.1158/1535-7163.MCT-11-0152
Serikawa T, Suzuki N, Kikuchi H, Tanaka K, Kitagawa T. A new cationic liposome for efficient gene delivery with serum into cultured human cells: a quantitative analysis using two independent fluorescent probes. Biochim Biophys Acta. 2000;1467:419–30. https://doi.org/10.1016/s0005-2736(00)00239-x .
doi: 10.1016/s0005-2736(00)00239-x
pubmed: 11030599
Wang H, Liu S, Jia L, Chu F, Zhou Y, He Z, et al. Nanostructured lipid carriers for microRNA delivery in tumor gene therapy. Cancer Cell Int. BioMed Central. 2018;18:1–6. https://doi.org/10.1186/s12935-018-0596-x .
doi: 10.1186/s12935-018-0596-x
Boussif O, Lezoualc’h F, Zanta MA, Mergnyt D, Schermant D, Demeneixt B, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Biochemistry. 1995;7297–301.
Rehman Z, ur, Hoekstra D, Zuhorn IS. Mechanism of polyplex- and lipoplex-mediated delivery of nucleic acids: real-time visualization of transient membrane destabilization without endosomal lysis. ACS Nano. 2013;7:3767–77.
doi: 10.1021/nn3049494
Behr J-P. The proton sponge: a trick to enter cells the viruses did not exploit. Chim Int J Chem. 1997;51:34–6.
doi: 10.2533/chimia.1997.34
Storrie H, Mooney D. Sustained delivery of plasmid DNA from polymeric scaffolds for tissue engineering. Adv Drug Deliv Rev. 2006;58:500–14.
pubmed: 16759734
doi: 10.1016/j.addr.2006.03.004
Wirth T, Ylä-Herttuala S. Gene transfer vectors (DNA vehicles) and their incorporation into biomaterials for bone repair. Biomater Bone Regen. Elsevier; 2014;374–405.
Qiu N, Wang G, Wang J, Zhou Q, Guo M, Wang Y, et al. Tumor-associated macrophage and tumor-cell dually transfecting polyplexes for efficient interleukin-12 cancer gene therapy. Adv Mater. 2021;33:2006189.
doi: 10.1002/adma.202006189
Zhang M, Weng Y, Cao Z, Guo S, Hu B, Lu M, et al. ROS-activatable siRNA-engineered polyplex for NIR-triggered synergistic cancer treatment. ACS Appl Mater Interfaces. 2020;12:32289–300.
pubmed: 32584027
doi: 10.1021/acsami.0c06614
Kandasamy G, Danilovtseva EN, Annenkov VV, Krishnan UM. Poly(1-vinylimidazole) polyplexes as novel therapeutic gene carriers for lung cancer therapy. Beilstein J Nanotechnol. 2020;11:354–69.
pubmed: 32190532
pmcid: 7061483
doi: 10.3762/bjnano.11.26
Parmar MB, KC RB, Löbenberg R, Uludağ H. Additive polyplexes to undertake siRNA therapy against CDC20 and survivin in breast cancer cells. Biomacromolecules. 2018;19:4193–206.
pubmed: 30222931
doi: 10.1021/acs.biomac.8b00918
Parmar MB, Meenakshi Sundaram DN, KC RB, Maranchuk R, Montazeri Aliabadi H, Hugh JC, et al. Combinational siRNA delivery using hyaluronic acid modified amphiphilic polyplexes against cell cycle and phosphatase proteins to inhibit growth and migration of triple-negative breast cancer cells. Acta Biomater. 2018;66:294–309.
pubmed: 29183848
doi: 10.1016/j.actbio.2017.11.036
Tiwari AP, Rohiwal SS. Synthesis and bioconjugation of hybrid nanostructures for biomedical applications. Hybrid Nanostructures for Cancer Theranostics. Elsevier; 2019. p. 17–41.
Ghosh B, Biswas S. Polymeric micelles in cancer therapy: state of the art. J Control Release. 2021;332:127–47.
pubmed: 33609621
doi: 10.1016/j.jconrel.2021.02.016
Rana V, Sharma R. Recent advances in development of nano drug delivery. Appl Target Nano Drugs Deliv Syst. Elsevier; 2019. p. 93–131.
Fox ME, Szoka FC, Fréchet JMJ. Soluble polymer carriers for the treatment of cancer: the importance of molecular architecture. Acc Chem Res. 2009;42:1141–51.
pubmed: 19555070
pmcid: 2759385
doi: 10.1021/ar900035f
Jain RK. Transport of molecules across tumor vasculature. Cancer Metastasis Rev. 1987;6:559–93.
pubmed: 3327633
doi: 10.1007/BF00047468
Lu Y, Zhang E, Yang J, Cao Z. Strategies to improve micelle stability for drug delivery. Nano Res. 2018;11:4985–98.
pubmed: 30370014
pmcid: 6201237
doi: 10.1007/s12274-018-2152-3
Subramani K, Ahmed W. Nanoparticulate drug delivery systems for oral cancer treatment. Emerg Nanotechnologies Dent. Elsevier; 2012. p. 333–45.
Yadav HKS, Almokdad AA, Shaluf SIM, Debe MS. Polymer-based nanomaterials for drug-delivery carriers. Nanocarriers Drug Deliv. Elsevier; 2019. p. 531–56.
Zhang Y, Huang Y, Li S. Polymeric micelles: nanocarriers for cancer-targeted drug delivery. AAPS PharmSciTech. 2014;15:862–71.
pubmed: 24700296
pmcid: 4113619
doi: 10.1208/s12249-014-0113-z
Laskar P, Saha B, Ghosh SK, Dey J. PEG based random copolymer micelles as drug carriers: the effect of hydrophobe content on drug solubilization and cytotoxicity. RSC Adv. 2015;5:16265–76.
doi: 10.1039/C4RA11479E
Zhang T, Luo J, Fu Y, Li H, Ding R, Gong T, et al. Novel oral administrated paclitaxel micelles with enhanced bioavailability and antitumor efficacy for resistant breast cancer. Colloids Surf B: Biointerfaces. 2017;150:89–97.
pubmed: 27898360
doi: 10.1016/j.colsurfb.2016.11.024
Kim D-W, Kim S-Y, Kim H-K, Kim S-W, Shin SW, Kim JS, et al. Multicenter phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Ann Oncol. 2007;18:2009–14.
pubmed: 17785767
doi: 10.1093/annonc/mdm374
Lim WT, Tan EH, Toh CK, Hee SW, Leong SS, Ang PCS, et al. Phase I pharmacokinetic study of a weekly liposomal paclitaxel formulation (Genexol®-PM) in patients with solid tumors. Ann Oncol. 2010;21:382–8.
pubmed: 19633055
doi: 10.1093/annonc/mdp315
Thakore SI, Solanki A, Das M. Exploring potential of polymers in cancer management. Mater Biomed Eng. Elsevier; 2019. p. 113–33.
Idris AO, Mamba B, Feleni U. Poly (propylene imine) dendrimer: a potential nanomaterial for electrochemical application. Mater Chem Phys. 2020;244:122641. https://www.sciencedirect.com/science/article/pii/S0254058420300237
doi: 10.1016/j.matchemphys.2020.122641
Kaur D, Jain K, Mehra NK, Kesharwani P, Jain NK. A review on comparative study of PPI and PAMAM dendrimers. J Nanopart Res. 2016;18:146. https://doi.org/10.1007/s11051-016-3423-0 .
doi: 10.1007/s11051-016-3423-0
Chauhan A. Dendrimers for drug delivery. Molecules. 2018;23:938.
pubmed: 29670005
pmcid: 6017392
doi: 10.3390/molecules23040938
Rescignano N, Kenny JM. Physicochemical properties of nanosized polymeric drug carrier systems. Core-Shell Nanostructures Drug Deliv Theranostics. Elsevier; 2018. p. 7–17.
Lee CC, MacKay JA, Fréchet JMJ, Szoka FC. Designing dendrimers for biological applications. Nat Biotechnol. 2005;23:1517–26.
pubmed: 16333296
doi: 10.1038/nbt1171
Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, et al. A new class of polymers: starburst-dendritic macromolecules. Polym J. 1985;17:117–32.
doi: 10.1295/polymj.17.117
Zheng Y, Fu F, Zhang M, Shen M, Zhu M, Shi X. Multifunctional dendrimers modified with alpha-tocopheryl succinate for targeted cancer therapy. Med Chem Commun. 2014;5:879–85.
doi: 10.1039/C3MD00324H
Zhu J, Zheng L, Wen S, Tang Y, Shen M, Zhang G, et al. Targeted cancer theranostics using alpha-tocopheryl succinate-conjugated multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials. 2014;35:7635–46.
pubmed: 24927683
doi: 10.1016/j.biomaterials.2014.05.046
Abedi-Gaballu F, Dehghan G, Ghaffari M, Yekta R, Abbaspour-Ravasjani S, Baradaran B, et al. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Appl Mater Today. 2018;12:177–90.
pubmed: 30511014
pmcid: 6269116
doi: 10.1016/j.apmt.2018.05.002
Li X, Takashima M, Yuba E, Harada A, Kono K. PEGylated PAMAM dendrimer–doxorubicin conjugate-hybridized gold nanorod for combined photothermal-chemotherapy. Biomaterials. 2014;35:6576–84.
pubmed: 24816361
doi: 10.1016/j.biomaterials.2014.04.043
Pishavar E, Ramezani M, Hashemi M. Co-delivery of doxorubicin and TRAIL plasmid by modified PAMAM dendrimer in colon cancer cells, in vitro and in vivo evaluation. Drug Dev Ind Pharm. 2019;45:1931–9.
pubmed: 31609130
doi: 10.1080/03639045.2019.1680995
Torres-Pérez SA, Ramos-Godínez MP, Ramón-Gallegos E. Effect of methotrexate conjugated PAMAM dendrimers on the viability of breast cancer cells. 2019. p. 050014.
Zhao Y, Guo Y, Li R, Wang T, Han M, Zhu C, et al. Methotrexate nanoparticles prepared with codendrimer from Polyamidoamine (PAMAM) and oligoethylene glycols (OEG) dendrons: antitumor efficacy in vitro and in vivo. Sci Rep. 2016;6:28983.
pubmed: 27388443
pmcid: 4937365
doi: 10.1038/srep28983
Kesavan A, Ilaiyaraja P, Sofi Beaula W, Veena Kumari V, Sugin Lal J, Arunkumar C, et al. Tumor targeting using polyamidoamine dendrimer–cisplatin nanoparticles functionalized with diglycolamic acid and herceptin. Eur J Pharm Biopharm. 2015;96:255–63.
pubmed: 26277659
doi: 10.1016/j.ejpb.2015.08.001
Yellepeddi VK, Vangara KK. In vivo efficacy of PAMAM-dendrimer-cisplatin complexes in SKOV-3 xenografted balb/C nude mice. J Biotechnol Biomater. 2013;s13.
Finlay J, Roberts CM, Lowe G, Loeza J, Rossi JJ, Glackin CA. RNA-based TWIST1 inhibition via dendrimer complex to reduce breast cancer cell metastasis. Biomed Res Int. Hindawi Publishing Corporation; 2015;2015.
Kesharwani P, Banerjee S, Gupta U, Mohd Amin MCI, Padhye S, Sarkar FH, et al. PAMAM dendrimers as promising nanocarriers for RNAi therapeutics. Mater Today. 2015;18:565–72. https://www.sciencedirect.com/science/article/pii/S1369702115002023
doi: 10.1016/j.mattod.2015.06.003
Akhtar S, Chandrasekhar BB, Benter I, El-Hashim A. Cell signalling effects of polyfect and Superfect dendrimer delivery systems on ErbB family of receptor tyrosine kinases. Physiology. 2019. https://www.physoc.org/abstracts/cell-signalling-effects-of-polyfect-and-superfect-dendrimer-delivery-systems-on-erbb-family-of-receptor-tyrosine-kinases/
Yan X, Yang Y, Sun Y. Dendrimer applications for cancer therapies. J Phys Conf Ser. 2021;1948.
Richter-Egger DL, Tesfai A, Tucker SA. Spectroscopic investigations of poly(propyleneimine)dendrimers using the solvatochromic probe phenol blue and comparisons to poly(amidoamine) dendrimers. Anal Chem. American Chemical Society. 2001;73:5743–51. https://doi.org/10.1021/ac0155355 .
doi: 10.1021/ac0155355
pubmed: 11774916
Caminade A-M, Majoral J-P. Which dendrimer to attain the desired properties? Focus on phosphorhydrazone dendrimers. Molecules. Switzerland; 2018;23.
Kesharwani P, Tekade RK, Jain NK. Generation dependent cancer targeting potential of poly(propyleneimine) dendrimer. Biomaterials. 2014;35:5539–48. https://doi.org/10.1016/j.biomaterials.2014.03.064 .
doi: 10.1016/j.biomaterials.2014.03.064
pubmed: 24731713
Kesharwani P, Tekade RK, Jain NK. Generation dependent safety and efficacy of folic acid conjugated dendrimer based anticancer drug formulations. Pharm Res. 2014;32:1438–50.
pubmed: 25330744
doi: 10.1007/s11095-014-1549-2
Jain NK, Tare MS, Mishra V, Tripathi PK. The development, characterization and in vivo anti-ovarian cancer activity of poly(propylene imine) (PPI)-antibody conjugates containing encapsulated paclitaxel. Nanomedicine. United States. 2015;11:207–18.
pubmed: 25262579
doi: 10.1016/j.nano.2014.09.006
Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov. 2009;8:129–38. https://doi.org/10.1038/nrd2742 .
doi: 10.1038/nrd2742
pubmed: 19180106
pmcid: 7097568
Kesharwani P, Iyer AK. Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discov Today. England. 2015;20:536–47.
pubmed: 25555748
doi: 10.1016/j.drudis.2014.12.012
Chorghade M, Liebman M, Lushington G, Naylor S, Chaguturu R. Gap assessment for advancing drug discovery. Drug Discov. 2016.
Bochicchio A, Jordaan S, Losasso V, Chetty S, Perera RC, Ippoliti E, et al. Designing the sniper: improving targeted human cytolytic fusion proteins for anti-cancer therapy via molecular simulation. Biomedicines. 2017;5.
He Y, Liew YC, Sharma N, Woo SK, Chau YT, Yap CW. PaDEL-DDPredictor open-source software for PD-PK-T prediction.pdf. J Comput Chem. 2012.
Dressman JB, Thelen K, Willmann S, Dressman JB, Thelen K, Willmann S. An update on computational oral absorption simulation. Expert Opin Drug Metab Toxicol. 2011;5255.
Berellini G, Springer C, Waters NJ, Lombardo F. In silico prediction of volume of distribution in human using linear and nonlinear models on a 669 compound data set. J Med Chem. 2009;52:4488–95.
pubmed: 19603833
doi: 10.1021/jm9004658
Strittmatter N, Moss JI, Race AM, Sutton D, Canales JR, Ling S, et al. Multi-modal molecular imaging maps the correlation between tumor microenvironments and nanomedicine distribution. Theranostics. 2022;12:2162–74.
pubmed: 35265205
pmcid: 8899579
doi: 10.7150/thno.68000
Masoumi E, Tahaghoghi-Hajghorbani S, Jafarzadeh L, Sanaei M-J, Pourbagheri-Sigaroodi A, Bashash D. The application of immune checkpoint blockade in breast cancer and the emerging role of nanoparticle. J Control Release. Elsevier B.V. 2021;340:168–87.
pubmed: 34743998
doi: 10.1016/j.jconrel.2021.10.018
Hassett KJ, Higgins J, Woods A, Levy B, Xia Y, Moore MJ, et al. Impact of lipid nanoparticle size on mRNA vaccine immunogenicity. 2021;335:237–46.
Ren S, Wang M, Wang C, Wang Y, Sun C, Zeng Z. Application of non-viral vectors in drug delivery and gene therapy. Polymers (Basel). 2021.