Post-transcriptional checkpoints in autoimmunity.
Journal
Nature reviews. Rheumatology
ISSN: 1759-4804
Titre abrégé: Nat Rev Rheumatol
Pays: United States
ID NLM: 101500080
Informations de publication
Date de publication:
08 2023
08 2023
Historique:
accepted:
10
05
2023
medline:
23
10
2023
pubmed:
14
6
2023
entrez:
13
6
2023
Statut:
ppublish
Résumé
Post-transcriptional regulation is a fundamental process in gene expression that has a role in diverse cellular processes, including immune responses. A core concept underlying post-transcriptional regulation is that protein abundance is not solely determined by transcript abundance. Indeed, transcription and translation are not directly coupled, and intervening steps occur between these processes, including the regulation of mRNA stability, localization and alternative splicing, which can impact protein abundance. These steps are controlled by various post-transcription factors such as RNA-binding proteins and non-coding RNAs, including microRNAs, and aberrant post-transcriptional regulation has been implicated in various pathological conditions. Indeed, studies on the pathogenesis of autoimmune and inflammatory diseases have identified various post-transcription factors as important regulators of immune cell-mediated and target effector cell-mediated pathological conditions. This Review summarizes current knowledge regarding the roles of post-transcriptional checkpoints in autoimmunity, as evidenced by studies in both haematopoietic and non-haematopoietic cells, and discusses the relevance of these findings for developing new anti-inflammatory therapies.
Identifiants
pubmed: 37311941
doi: 10.1038/s41584-023-00980-y
pii: 10.1038/s41584-023-00980-y
doi:
Substances chimiques
MicroRNAs
0
Transcription Factors
0
Types de publication
Journal Article
Review
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
486-502Informations de copyright
© 2023. Springer Nature Limited.
Références
Theofilopoulos, A. N., Kono, D. H. & Baccala, R. The multiple pathways to autoimmunity. Nat. Immunol. 18, 716–724 (2017).
pmcid: 5791156
pubmed: 28632714
Cho, J. H. & Gregersen, P. K. Genomics and the multifactorial nature of human autoimmune disease. N. Engl. J. Med. 365, 1612–1623 (2011).
pubmed: 22029983
Fugger, L., Jensen, L. T. & Rossjohn, J. Challenges, progress, and prospects of developing therapies to treat autoimmune diseases. Cell 181, 63–80 (2020).
pubmed: 32243797
Steinman, L. Immunology of relapse and remission in multiple sclerosis. Annu. Rev. Immunol. 32, 257–281 (2014).
pubmed: 24438352
Szekanecz, Z. et al. Autoinflammation and autoimmunity across rheumatic and musculoskeletal diseases. Nat. Rev. Rheumatol. 17, 585–595 (2021).
pubmed: 34341562
Buccitelli, C. & Selbach, M. mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet. 21, 630–644 (2020).
pubmed: 32709985
Nicolet, B. P. & Wolkers, M. C. The relationship of mRNA with protein expression in CD8
pmcid: 9581405
pubmed: 36260607
Jiang, L. et al. A quantitative proteome map of the human body. Cell 183, 269–283.e19 (2020).
pmcid: 7575058
pubmed: 32916130
Muller-McNicoll, M. & Neugebauer, K. M. How cells get the message: dynamic assembly and function of mRNA–protein complexes. Nat. Rev. Genet. 14, 275–287 (2013).
pubmed: 23478349
Gokhale, N. S., Smith, J. R., Van Gelder, R. D. & Savan, R. RNA regulatory mechanisms that control antiviral innate immunity. Immunol. Rev. 304, 77–96 (2021).
pmcid: 8616819
pubmed: 34405416
Turner, M. & Diaz-Munoz, M. D. RNA-binding proteins control gene expression and cell fate in the immune system. Nat. Immunol. 19, 120–129 (2018).
pubmed: 29348497
Carpenter, S., Ricci, E. P., Mercier, B. C., Moore, M. J. & Fitzgerald, K. A. Post-transcriptional regulation of gene expression in innate immunity. Nat. Rev. Immunol. 14, 361–376 (2014).
pubmed: 24854588
Mehta, A. & Baltimore, D. MicroRNAs as regulatory elements in immune system logic. Nat. Rev. Immunol. 16, 279–294 (2016).
pubmed: 27121651
Jurgens, A. P., Popovic, B. & Wolkers, M. C. T cells at work: how post-transcriptional mechanisms control T cell homeostasis and activation. Eur. J. Immunol. 51, 2178–2187 (2021).
pmcid: 8457102
pubmed: 34180545
O’Connell, R. M., Rao, D. S., Chaudhuri, A. A. & Baltimore, D. Physiological and pathological roles for microRNAs in the immune system. Nat. Rev. Immunol. 10, 111–122 (2010).
pubmed: 20098459
Xiao, C. & Rajewsky, K. MicroRNA control in the immune system: basic principles. Cell 136, 26–36 (2009).
pubmed: 19135886
Anderson, P. Post-transcriptional control of cytokine production. Nat. Immunol. 9, 353–359 (2008).
pubmed: 18349815
Stoecklin, G. & Anderson, P. In a tight spot: ARE-mRNAs at processing bodies. Genes. Dev. 21, 627–631 (2007).
pubmed: 17369394
Raghavan, A. et al. Genome-wide analysis of mRNA decay in resting and activated primary human T lymphocytes. Nucleic Acids Res. 30, 5529–5538 (2002).
pmcid: 140061
pubmed: 12490721
Yoshinaga, M. & Takeuchi, O. Post-transcriptional control of immune responses and its potential application. Clin. Transl. Immunol. 8, e1063 (2019).
Corley, M., Burns, M. C. & Yeo, G. W. How RNA-binding proteins interact with RNA: molecules and mechanisms. Mol. Cell 78, 9–29 (2020).
pmcid: 7202378
pubmed: 32243832
Hentze, M. W., Castello, A., Schwarzl, T. & Preiss, T. A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol. 19, 327–341 (2018).
pubmed: 29339797
Gerstberger, S., Hafner, M. & Tuschl, T. A census of human RNA-binding proteins. Nat. Rev. Genet. 15, 829–845 (2014).
pubmed: 25365966
Alles, J. et al. An estimate of the total number of true human miRNAs. Nucleic Acids Res. 47, 3353–3364 (2019).
pmcid: 6468295
pubmed: 30820533
Frye, M., Harada, B. T., Behm, M. & He, C. RNA modifications modulate gene expression during development. Science 361, 1346–1349 (2018).
pmcid: 6436390
pubmed: 30262497
Murray, P. J. Macrophage polarization. Annu. Rev. Physiol. 79, 541–566 (2017).
pubmed: 27813830
Petersone, L. et al. T cell/B cell collaboration and autoimmunity: an intimate relationship. Front. Immunol. 9, 1941 (2018).
pmcid: 6119692
pubmed: 30210496
Chemin, K., Gerstner, C. & Malmstrom, V. Effector functions of CD4
pmcid: 6422991
pubmed: 30915067
Arbuckle, M. R. et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 349, 1526–1533 (2003).
pubmed: 14561795
McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).
pubmed: 22150039
Dorner, T., Giesecke, C. & Lipsky, P. E. Mechanisms of B cell autoimmunity in SLE. Arthritis Res. Ther. 13, 243 (2011).
pmcid: 3308063
pubmed: 22078750
Winter, O., Dame, C., Jundt, F. & Hiepe, F. Pathogenic long-lived plasma cells and their survival niches in autoimmunity, malignancy, and allergy. J. Immunol. 189, 5105–5111 (2012).
pubmed: 23169863
William, J., Euler, C. & Shlomchik, M. J. Short-lived plasmablasts dominate the early spontaneous rheumatoid factor response: differentiation pathways, hypermutating cell types, and affinity maturation outside the germinal center. J. Immunol. 174, 6879–6887 (2005).
pubmed: 15905530
Eisenberg, R. & Albert, D. B-cell targeted therapies in rheumatoid arthritis and systemic lupus erythematosus. Nat. Clin. Pract. Rheumatol. 2, 20–27 (2006).
pubmed: 16932648
Edwards, J. C. & Cambridge, G. B-cell targeting in rheumatoid arthritis and other autoimmune diseases. Nat. Rev. Immunol. 6, 394–403 (2006).
pubmed: 16622478
Mariette, X. et al. A randomized, phase II study of sequential belimumab and rituximab in primary Sjögren’s syndrome. JCI Insight https://doi.org/10.1172/jci.insight.163030 (2022).
doi: 10.1172/jci.insight.163030
pmcid: 9746921
pubmed: 36477362
Rubin, S. J. S., Bloom, M. S. & Robinson, W. H. B cell checkpoints in autoimmune rheumatic diseases. Nat. Rev. Rheumatol. 15, 303–315 (2019).
pubmed: 30967621
Lee, D. S. W., Rojas, O. L. & Gommerman, J. L. B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nat. Rev. Drug Discov. 20, 179–199 (2021).
pubmed: 33324003
Nutt, S. L., Hodgkin, P. D., Tarlinton, D. M. & Corcoran, L. M. The generation of antibody-secreting plasma cells. Nat. Rev. Immunol. 15, 160–171 (2015).
pubmed: 25698678
Ise, W. & Kurosaki, T. Plasma cell differentiation during the germinal center reaction. Immunol. Rev. 288, 64–74 (2019).
pubmed: 30874351
Zandhuis, N. D., Nicolet, B. P. & Wolkers, M. C. RNA-binding protein expression alters upon differentiation of human B cells and T cells. Front. Immunol. 12, 717324 (2021).
pmcid: 8635512
pubmed: 34867946
Galloway, A. et al. RNA-binding proteins ZFP36L1 and ZFP36L2 promote cell quiescence. Science 352, 453–459 (2016).
pubmed: 27102483
Chang, X., Li, B. & Rao, A. RNA-binding protein hnRNPLL regulates mRNA splicing and stability during B-cell to plasma-cell differentiation. Proc. Natl Acad. Sci. USA 112, E1888–E1897 (2015).
pmcid: 4403190
pubmed: 25825742
Saveliev, A., Bell, S. E. & Turner, M. Efficient homing of antibody-secreting cells to the bone marrow requires RNA-binding protein ZFP36L1. J. Exp. Med. https://doi.org/10.1084/jem.20200504 (2021).
doi: 10.1084/jem.20200504
pubmed: 33306108
Newman, R. et al. Maintenance of the marginal-zone B cell compartment specifically requires the RNA-binding protein ZFP36L1. Nat. Immunol. 18, 683–693 (2017).
pmcid: 5438597
pubmed: 28394372
Caro-Maldonado, A. et al. Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. J. Immunol. 192, 3626–3636 (2014).
pubmed: 24616478
Blair, D., Dufort, F. J. & Chiles, T. C. Protein kinase Cβ is critical for the metabolic switch to glycolysis following B-cell antigen receptor engagement. Biochem. J. 448, 165–169 (2012).
pubmed: 22994860
Pearce, E. L., Poffenberger, M. C., Chang, C. H. & Jones, R. G. Fueling immunity: insights into metabolism and lymphocyte function. Science 342, 1242454 (2013).
pmcid: 4486656
pubmed: 24115444
Diaz-Munoz, M. D. et al. The RNA-binding protein HuR is essential for the B cell antibody response. Nat. Immunol. 16, 415–425 (2015).
pmcid: 4479220
pubmed: 25706746
DeMicco, A. et al. B Cell-intrinsic expression of the HuR RNA-binding protein is required for the T cell-dependent immune response in vivo. J. Immunol. 195, 3449–3462 (2015).
pubmed: 26320247
Monzon-Casanova, E. et al. The RNA-binding protein PTBP1 is necessary for B cell selection in germinal centers. Nat. Immunol. 19, 267–278 (2018).
pmcid: 5842895
pubmed: 29358707
Liu, N. & Pan, T. N
pubmed: 26840897
Bechara, R. & Gaffen, S. L. ‘(m
doi: 10.1016/j.it.2021.10.002
pmcid: 9393025
pubmed: 34728144
Shulman, Z. & Stern-Ginossar, N. The RNA modification N
pubmed: 32284591
Boulias, K. & Greer, E. L. Biological roles of adenine methylation in RNA. Nat. Rev. Genet. https://doi.org/10.1038/s41576-022-00534-0 (2022).
doi: 10.1038/s41576-022-00534-0
pmcid: 9354840
pubmed: 36261710
Grenov, A. C. et al. The germinal center reaction depends on RNA methylation and divergent functions of specific methyl readers. J. Exp. Med. https://doi.org/10.1084/jem.20210360 (2021).
doi: 10.1084/jem.20210360
pmcid: 8374864
pubmed: 34402854
Turner, D. J. et al. A functional screen of RNA binding proteins identifies genes that promote or limit the accumulation of CD138
doi: 10.7554/eLife.72313
pmcid: 9711519
pubmed: 36503705
Zaccara, S. & Jaffrey, S. R. A unified model for the function of YTHDF proteins in regulating m
pmcid: 7508256
pubmed: 32492408
Matsushita, K. et al. Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature 458, 1185–1190 (2009).
pubmed: 19322177
Bhat, N. et al. Regnase-1 is essential for B cell homeostasis to prevent immunopathology. J. Exp. Med. https://doi.org/10.1084/jem.20200971 (2021).
doi: 10.1084/jem.20200971
pmcid: 8025244
pubmed: 33822844
Ise, W. et al. The transcription factor BATF controls the global regulators of class-switch recombination in both B cells and T cells. Nat. Immunol. 12, 536–543 (2011).
pmcid: 3117275
pubmed: 21572431
Betz, B. C. et al. Batf coordinates multiple aspects of B and T cell function required for normal antibody responses. J. Exp. Med. 207, 933–942 (2010).
pmcid: 2867277
pubmed: 20421391
Yin, Z. et al. RNA-binding motifs of hnRNP K are critical for induction of antibody diversification by activation-induced cytidine deaminase. Proc. Natl Acad. Sci. USA 117, 11624–11635 (2020).
pmcid: 7261133
pubmed: 32385154
Hu, W., Begum, N. A., Mondal, S., Stanlie, A. & Honjo, T. Identification of DNA cleavage- and recombination-specific hnRNP cofactors for activation-induced cytidine deaminase. Proc. Natl Acad. Sci. USA 112, 5791–5796 (2015).
pmcid: 4426456
pubmed: 25902538
Jeker, L. T. & Bluestone, J. A. MicroRNA regulation of T-cell differentiation and function. Immunol. Rev. 253, 65–81 (2013).
pmcid: 3621017
pubmed: 23550639
Sandberg, R., Neilson, J. R., Sarma, A., Sharp, P. A. & Burge, C. B. Proliferating cells express mRNAs with shortened 3’ untranslated regions and fewer microRNA target sites. Science 320, 1643–1647 (2008).
pmcid: 2587246
pubmed: 18566288
de Yebenes, V. G., Bartolome-Izquierdo, N. & Ramiro, A. R. Regulation of B-cell development and function by microRNAs. Immunol. Rev. 253, 25–39 (2013).
pmcid: 3686225
pubmed: 23550636
Basso, K. et al. Identification of the human mature B cell miRNome. Immunity 30, 744–752 (2009).
pmcid: 2764486
pubmed: 19446474
Koralov, S. B. et al. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell 132, 860–874 (2008).
pubmed: 18329371
Belver, L., de Yebenes, V. G. & Ramiro, A. R. MicroRNAs prevent the generation of autoreactive antibodies. Immunity 33, 713–722 (2010).
pmcid: 3687137
pubmed: 21093320
Xu, S., Guo, K., Zeng, Q., Huo, J. & Lam, K. P. The RNase III enzyme Dicer is essential for germinal center B-cell formation. Blood 119, 767–776 (2012).
pubmed: 22117047
Ventura, A. et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132, 875–886 (2008).
pmcid: 2323338
pubmed: 18329372
Rao, D. S. et al. MicroRNA-34a perturbs B lymphocyte development by repressing the forkhead box transcription factor Foxp1. Immunity 33, 48–59 (2010).
pmcid: 2911227
pubmed: 20598588
Gururajan, M. et al. MicroRNA 125b inhibition of B cell differentiation in germinal centers. Int. Immunol. 22, 583–592 (2010).
pmcid: 2892362
pubmed: 20497960
Porstner, M. et al. miR-148a promotes plasma cell differentiation and targets the germinal center transcription factors Mitf and Bach2. Eur. J. Immunol. 45, 1206–1215 (2015).
pubmed: 25678371
Rodriguez, A. et al. Requirement of bic/microRNA-155 for normal immune function. Science 316, 608–611 (2007).
pmcid: 2610435
pubmed: 17463290
Thai, T. H. et al. Regulation of the germinal center response by microRNA-155. Science 316, 604–608 (2007).
pubmed: 17463289
Lu, D. et al. The miR-155-PU.1 axis acts on Pax5 to enable efficient terminal B cell differentiation. J. Exp. Med. 211, 2183–2198 (2014).
pmcid: 4203942
pubmed: 25288398
Kuchen, S. et al. Regulation of microRNA expression and abundance during lymphopoiesis. Immunity 32, 828–839 (2010).
pmcid: 2909788
pubmed: 20605486
Vigorito, E. et al. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity 27, 847–859 (2007).
pmcid: 4135426
pubmed: 18055230
Dorsett, Y. et al. MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. Immunity 28, 630–638 (2008).
pmcid: 2713656
pubmed: 18455451
Teng, G. et al. MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. Immunity 28, 621–629 (2008).
pmcid: 2430982
pubmed: 18450484
Walker, L. S. K. The link between circulating follicular helper T cells and autoimmunity. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-022-00693-5 (2022).
doi: 10.1038/s41577-022-00693-5
pmcid: 8915145
pubmed: 35277664
Patel, P. S. et al. Translational regulation of TFH cell differentiation and autoimmune pathogenesis. Sci. Adv. 8, eabo1782 (2022).
pmcid: 9232117
pubmed: 35749506
Ueno, H. T follicular helper cells in human autoimmunity. Curr. Opin. Immunol. 43, 24–31 (2016).
pubmed: 27588918
Vazquez, M. I., Catalan-Dibene, J. & Zlotnik, A. B cells responses and cytokine production are regulated by their immune microenvironment. Cytokine 74, 318–326 (2015).
pmcid: 4475485
pubmed: 25742773
Cyster, J. G. & Allen, C. D. C. B cell responses: cell interaction dynamics and decisions. Cell 177, 524–540 (2019).
pmcid: 6538279
pubmed: 31002794
Schneider, P. et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J. Exp. Med. 189, 1747–1756 (1999).
pmcid: 2193079
pubmed: 10359578
Mackay, F. & Schneider, P. Cracking the BAFF code. Nat. Rev. Immunol. 9, 491–502 (2009).
pubmed: 19521398
Mackay, F. & Browning, J. L. BAFF: a fundamental survival factor for B cells. Nat. Rev. Immunol. 2, 465–475 (2002).
pubmed: 12094221
Gorelik, L. et al. Normal B cell homeostasis requires B cell activation factor production by radiation-resistant cells. J. Exp. Med. 198, 937–945 (2003).
pmcid: 2194202
pubmed: 12975458
Steri, M. et al. Overexpression of the cytokine BAFF and autoimmunity risk. N. Engl. J. Med. 376, 1615–1626 (2017).
pmcid: 5605835
pubmed: 28445677
Vincent, F. B., Morand, E. F., Schneider, P. & Mackay, F. The BAFF/APRIL system in SLE pathogenesis. Nat. Rev. Rheumatol. 10, 365–373 (2014).
pubmed: 24614588
Varin, M. M. et al. B-cell tolerance breakdown in Sjögren’s syndrome: focus on BAFF. Autoimmun. Rev. 9, 604–608 (2010).
pubmed: 20457281
Nocturne, G. & Mariette, X. B cells in the pathogenesis of primary Sjögren syndrome. Nat. Rev. Rheumatol. 14, 133–145 (2018).
pubmed: 29416129
Vinuesa, C. G. et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435, 452–458 (2005).
pubmed: 15917799
Glasmacher, E. et al. Roquin binds inducible costimulator mRNA and effectors of mRNA decay to induce microRNA-independent post-transcriptional repression. Nat. Immunol. 11, 725–733 (2010).
pubmed: 20639877
Vogel, K. U. et al. Roquin paralogs 1 and 2 redundantly repress the Icos and Ox40 costimulator mRNAs and control follicular helper T cell differentiation. Immunity 38, 655–668 (2013).
pubmed: 23583643
Yu, D. et al. Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA. Nature 450, 299–303 (2007).
pubmed: 18172933
Qi, H., Cannons, J. L., Klauschen, F., Schwartzberg, P. L. & Germain, R. N. SAP-controlled T–B cell interactions underlie germinal centre formation. Nature 455, 764–769 (2008).
pmcid: 2652134
pubmed: 18843362
Linterman, M. A. et al. Follicular helper T cells are required for systemic autoimmunity. J. Exp. Med. 206, 561–576 (2009).
pmcid: 2699132
pubmed: 19221396
Essig, K. et al. Roquin targets mRNAs in a 3’-UTR-specific manner by different modes of regulation. Nat. Commun. 9, 3810 (2018).
pmcid: 6145892
pubmed: 30232334
Jeltsch, K. M. et al. Cleavage of roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed targets to promote T
pubmed: 25282160
Uehata, T. et al. Malt1-induced cleavage of regnase-1 in CD4
pubmed: 23706741
Moore, M. J. et al. ZFP36 RNA-binding proteins restrain T cell activation and anti-viral immunity. Elife https://doi.org/10.7554/eLife.33057 (2018).
doi: 10.7554/eLife.33057
pmcid: 6128690
pubmed: 30192230
Srivastava, M. et al. Roquin binds microRNA-146a and Argonaute2 to regulate microRNA homeostasis. Nat. Commun. 6, 6253 (2015).
pubmed: 25697406
Pratama, A. et al. MicroRNA-146a regulates ICOS–ICOSL signalling to limit accumulation of T follicular helper cells and germinal centres. Nat. Commun. 6, 6436 (2015).
pubmed: 25743066
Zhu, Y. et al. The E3 ligase VHL promotes follicular helper T cell differentiation via glycolytic-epigenetic control. J. Exp. Med. 216, 1664–1681 (2019).
pmcid: 6605754
pubmed: 31123085
Yao, Y. et al. METTL3-dependent m
pmcid: 7910450
pubmed: 33637761
Liu, N. et al. N
pmcid: 4355918
pubmed: 25719671
Zaccara, S., Ries, R. J. & Jaffrey, S. R. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. 20, 608–624 (2019).
pubmed: 31520073
Edupuganti, R. R. et al. N
pmcid: 5725193
pubmed: 28869609
Gebauer, F. & Hentze, M. W. Molecular mechanisms of translational control. Nat. Rev. Mol. Cell Biol. 5, 827–835 (2004).
pmcid: 7097087
pubmed: 15459663
Truitt, M. L. et al. Differential requirements for eIF4E dose in normal development and cancer. Cell 162, 59–71 (2015).
pmcid: 4491046
pubmed: 26095252
Shen, S. et al. An epitranscriptomic mechanism underlies selective mRNA translation remodelling in melanoma persister cells. Nat. Commun. 10, 5713 (2019).
pmcid: 6915789
pubmed: 31844050
Scapini, P. et al. G-CSF-stimulated neutrophils are a prominent source of functional BLyS. J. Exp. Med. 197, 297–302 (2003).
pmcid: 2193843
pubmed: 12566413
Huard, B. et al. BAFF production by antigen-presenting cells provides T cell co-stimulation. Int. Immunol. 16, 467–475 (2004).
pubmed: 14978020
Craxton, A., Magaletti, D., Ryan, E. J. & Clark, E. A. Macrophage- and dendritic cell–dependent regulation of human B-cell proliferation requires the TNF family ligand BAFF. Blood 101, 4464–4471 (2003).
pubmed: 12531790
Chu, V. T., Enghard, P., Riemekasten, G. & Berek, C. In vitro and in vivo activation induces BAFF and APRIL expression in B cells. J. Immunol. 179, 5947–5957 (2007).
pubmed: 17947668
Ittah, M. et al. B cell-activating factor of the tumor necrosis factor family (BAFF) is expressed under stimulation by interferon in salivary gland epithelial cells in primary Sjögren’s syndrome. Arthritis Res. Ther. 8, R51 (2006).
pmcid: 1526588
pubmed: 16507175
Kato, A., Truong-Tran, A. Q., Scott, A. L., Matsumoto, K. & Schleimer, R. P. Airway epithelial cells produce B cell-activating factor of TNF family by an IFN-β-dependent mechanism. J. Immunol. 177, 7164–7172 (2006).
pubmed: 17082634
Idda, M. L. et al. Cooperative translational control of polymorphic BAFF by NF90 and miR-15a. Nucleic Acids Res. 46, 12040–12051 (2018).
pmcid: 6294513
pubmed: 30272251
Liblau, R. S., Wong, F. S., Mars, L. T. & Santamaria, P. Autoreactive CD8 T cells in organ-specific autoimmunity: emerging targets for therapeutic intervention. Immunity 17, 1–6 (2002).
pubmed: 12150886
Krovi, S. H. & Kuchroo, V. K. Activation pathways that drive CD4
pmcid: 9255211
pubmed: 35142369
Rodriguez-Galan, A., Fernandez-Messina, L. & Sanchez-Madrid, F. Control of immunoregulatory molecules by miRNAs in T cell activation. Front. Immunol. 9, 2148 (2018).
pmcid: 6167432
pubmed: 30319616
Wu, H. et al. miRNA profiling of naive, effector and memory CD8 T cells. PLoS One 2, e1020 (2007).
pmcid: 2000354
pubmed: 17925868
Muljo, S. A. et al. Aberrant T cell differentiation in the absence of Dicer. J. Exp. Med. 202, 261–269 (2005).
pmcid: 2212998
pubmed: 16009718
Zhang, N. & Bevan, M. J. Dicer controls CD8
pmcid: 3003005
pubmed: 21098294
Yang, L. et al. miR-146a controls the resolution of T cell responses in mice. J. Exp. Med. 209, 1655–1670 (2012).
pmcid: 3428948
pubmed: 22891274
Myers, D. R., Zikherman, J. & Roose, J. P. Tonic signals: why do lymphocytes bother? Trends Immunol. 38, 844–857 (2017).
pmcid: 5669999
pubmed: 28754596
Boyman, O., Letourneau, S., Krieg, C. & Sprent, J. Homeostatic proliferation and survival of naive and memory T cells. Eur. J. Immunol. 39, 2088–2094 (2009).
pubmed: 19637200
Sprent, J. & Surh, C. D. Normal T cell homeostasis: the conversion of naive cells into memory-phenotype cells. Nat. Immunol. 12, 478–484 (2011).
pmcid: 3434123
pubmed: 21739670
Karginov, T. A., Menoret, A. & Vella, A. T. Optimal CD8
pmcid: 9209503
pubmed: 35725727
Hernandez, R., Poder, J., LaPorte, K. M. & Malek, T. R. Engineering IL-2 for immunotherapy of autoimmunity and cancer. Nat. Rev. Immunol. 22, 614–628 (2022).
pubmed: 35217787
Rosetti, F., Madera-Salcedo, I. K., Rodriguez-Rodriguez, N. & Crispin, J. C. Regulation of activated T cell survival in rheumatic autoimmune diseases. Nat. Rev. Rheumatol. 18, 232–244 (2022).
pubmed: 35075294
Ogilvie, R. L. et al. Tristetraprolin down-regulates IL-2 gene expression through AU-rich element-mediated mRNA decay. J. Immunol. 174, 953–961 (2005).
pubmed: 15634918
Salerno, F. et al. Translational repression of pre-formed cytokine-encoding mRNA prevents chronic activation of memory T cells. Nat. Immunol. 19, 828–837 (2018).
pmcid: 6643272
pubmed: 29988089
Ogilvie, R. L. et al. Tristetraprolin mediates interferon-γ mRNA decay. J. Biol. Chem. 284, 11216–11223 (2009).
pmcid: 2670126
pubmed: 19258311
Cook, M. E. et al. The ZFP36 family of RNA binding proteins regulates homeostatic and autoreactive T cell responses. Sci. Immunol. 7, eabo0981 (2022).
pmcid: 9832469
pubmed: 36269839
Techasintana, P. et al. The RNA-binding protein HuR posttranscriptionally regulates IL-2 homeostasis and CD4
pmcid: 6052877
pubmed: 30035254
Petkau, G. et al. The timing of differentiation and potency of CD8 effector function is set by RNA binding proteins. Nat. Commun. 13, 2274 (2022).
pmcid: 9046422
pubmed: 35477960
Zhou, J. et al. m
doi: 10.1126/sciadv.abg0470
pmcid: 8694604
pubmed: 34936458
Chen, J. et al. Posttranscriptional gene regulation of IL-17 by the RNA-binding protein HuR is required for initiation of experimental autoimmune encephalomyelitis. J. Immunol. 191, 5441–5450 (2013).
pmcid: 3831112
pubmed: 24166976
Bluml, S. et al. Essential role of microRNA-155 in the pathogenesis of autoimmune arthritis in mice. Arthritis Rheum. 63, 1281–1288 (2011).
pubmed: 21321928
Escobar, T., Yu, C. R., Muljo, S. A. & Egwuagu, C. E. STAT3 activates miR-155 in Th17 cells and acts in concert to promote experimental autoimmune uveitis. Invest. Ophthalmol. Vis. Sci. 54, 4017–4025 (2013).
pmcid: 3680004
pubmed: 23674757
Murugaiyan, G., Beynon, V., Mittal, A., Joller, N. & Weiner, H. L. Silencing microRNA-155 ameliorates experimental autoimmune encephalomyelitis. J. Immunol. 187, 2213–2221 (2011).
pubmed: 21788439
Escobar, T. M. et al. miR-155 activates cytokine gene expression in Th17 cells by regulating the DNA-binding protein Jarid2 to relieve polycomb-mediated repression. Immunity 40, 865–879 (2014).
pmcid: 4092165
pubmed: 24856900
Krebs, C. F. et al. MicroRNA-155 drives TH17 immune response and tissue injury in experimental crescentic GN. J. Am. Soc. Nephrol. 24, 1955–1965 (2013).
pmcid: 3839549
pubmed: 23949802
Wang, H. et al. Negative regulation of Hif1a expression and T
pmcid: 3996831
pubmed: 24608041
Nyati, K. K., Zaman, M. M., Sharma, P. & Kishimoto, T. Arid5a, an RNA-binding protein in immune regulation: RNA stability, inflammation, and autoimmunity. Trends Immunol. 41, 255–268 (2020).
pubmed: 32035762
Hanieh, H. et al. Arid5a stabilizes OX40 mRNA in murine CD4
pubmed: 29244194
Croft, M. Control of immunity by the TNFR-related molecule OX40 (CD134). Annu. Rev. Immunol. 28, 57–78 (2010).
pmcid: 2882161
pubmed: 20307208
Edner, N. M., Carlesso, G., Rush, J. S. & Walker, L. S. K. Targeting co-stimulatory molecules in autoimmune disease. Nat. Rev. Drug Discov. 19, 860–883 (2020).
pubmed: 32939077
Masuda, K. et al. Arid5a regulates naive CD4
pmcid: 4821647
pubmed: 27022145
Masuda, K. et al. Arid5a controls IL-6 mRNA stability, which contributes to elevation of IL-6 level in vivo. Proc. Natl Acad. Sci. USA 110, 9409–9414 (2013).
pmcid: 3677444
pubmed: 23676272
Taylor, T. C. et al. Arid5a mediates an IL-17-dependent pathway that drives autoimmunity but not antifungal host defense. J. Immunol. https://doi.org/10.4049/jimmunol.2200132 (2022).
doi: 10.4049/jimmunol.2200132
pubmed: 35977798
Miao, R. et al. Targeted disruption of MCPIP1/Zc3h12a results in fatal inflammatory disease. Immunol. Cell Biol. 91, 368–376 (2013).
pmcid: 3932977
pubmed: 23567898
Ansa-Addo, E. A. et al. RNA binding protein PCBP1 is an intracellular immune checkpoint for shaping T cell responses in cancer immunity. Sci. Adv. 6, eaaz3865 (2020).
pmcid: 7259945
pubmed: 32523987
Durant, L. et al. Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity 32, 605–615 (2010).
pmcid: 3148263
pubmed: 20493732
Zhou, L. et al. IL-6 programs T
pubmed: 17581537
Ciofani, M. et al. A validated regulatory network for Th17 cell specification. Cell 151, 289–303 (2012).
pmcid: 3503487
pubmed: 23021777
Yoshimura, A., Naka, T. & Kubo, M. SOCS proteins, cytokine signalling and immune regulation. Nat. Rev. Immunol. 7, 454–465 (2007).
pubmed: 17525754
Li, H. B. et al. m
pmcid: 5729908
pubmed: 28792938
Liu, Y. et al. tRNA-m
pubmed: 36138184
Bahrami, S. & Drablos, F. Gene regulation in the immediate-early response process. Adv. Biol. Regul. 62, 37–49 (2016).
pubmed: 27220739
Lu, L. F. et al. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 30, 80–91 (2009).
pmcid: 2654249
pubmed: 19144316
Dudda, J. C. et al. MicroRNA-155 is required for effector CD8
pmcid: 3788592
pubmed: 23601686
Schett, G. & Neurath, M. F. Resolution of chronic inflammatory disease: universal and tissue-specific concepts. Nat. Commun. 9, 3261 (2018).
pmcid: 6093916
pubmed: 30111884
Morell, M., Varela, N. & Maranon, C. Myeloid populations in systemic autoimmune diseases. Clin. Rev. Allergy Immunol. 53, 198–218 (2017).
pubmed: 28528521
Psarras, A., Wittmann, M. & Vital, E. M. Emerging concepts of type I interferons in SLE pathogenesis and therapy. Nat. Rev. Rheumatol. 18, 575–590 (2022).
pubmed: 36097207
Kurowska-Stolarska, M. & Alivernini, S. Synovial tissue macrophages in joint homeostasis, rheumatoid arthritis and disease remission. Nat. Rev. Rheumatol. 18, 384–397 (2022).
pubmed: 35672464
Kopf, M., Bachmann, M. F. & Marsland, B. J. Averting inflammation by targeting the cytokine environment. Nat. Rev. Drug Discov. 9, 703–718 (2010).
pubmed: 20811382
Burmester, G. R., Feist, E. & Dorner, T. Emerging cell and cytokine targets in rheumatoid arthritis. Nat. Rev. Rheumatol. 10, 77–88 (2014).
pubmed: 24217582
McInnes, I. B., Buckley, C. D. & Isaacs, J. D. Cytokines in rheumatoid arthritis — shaping the immunological landscape. Nat. Rev. Rheumatol. 12, 63–68 (2016).
pubmed: 26656659
McGeachy, M. J., Cua, D. J. & Gaffen, S. L. The IL-17 family of cytokines in health and disease. Immunity 50, 892–906 (2019).
pmcid: 6474359
Ostareck, D. H. & Ostareck-Lederer, A. RNA-binding proteins in the control of LPS-induced macrophage response. Front. Genet. 10, 31 (2019).
pmcid: 6369361
pubmed: 30778370
Liepelt, A. et al. Identification of RNA-binding proteins in macrophages by interactome capture. Mol. Cell Proteom. 15, 2699–2714 (2016).
Tiedje, C. et al. The RNA-binding protein TTP is a global post-transcriptional regulator of feedback control in inflammation. Nucleic Acids Res. 44, 7418–7440 (2016).
pmcid: 5009735
pubmed: 27220464
Shah, S., Mostafa, M. M., McWhae, A., Traves, S. L. & Newton, R. Negative feed-forward control of tumor necrosis factor (TNF) by tristetraprolin (ZFP36) is limited by the mitogen-activated protein kinase phosphatase, dual-specificity phosphatase 1 (DUSP1): implications for regulation by glucocorticoids. J. Biol. Chem. 291, 110–125 (2016).
pubmed: 26546680
Molle, C. et al. Tristetraprolin regulation of interleukin 23 mRNA stability prevents a spontaneous inflammatory disease. J. Exp. Med. 210, 1675–1684 (2013).
pmcid: 3754859
pubmed: 23940256
Chen, Y. L. et al. Transcriptional regulation of tristetraprolin by NF-κB signaling in LPS-stimulated macrophages. Mol. Biol. Rep. 40, 2867–2877 (2013).
pubmed: 23212617
Carballo, E., Lai, W. S. & Blackshear, P. J. Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability. Blood 95, 1891–1899 (2000).
pubmed: 10706852
Carballo, E., Lai, W. S. & Blackshear, P. J. Feedback inhibition of macrophage tumor necrosis factor-α production by tristetraprolin. Science 281, 1001–1005 (1998).
pubmed: 9703499
Taylor, G. A. et al. A pathogenetic role for TNF α in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity 4, 445–454 (1996).
pubmed: 8630730
White, E. J., Brewer, G. & Wilson, G. M. Post-transcriptional control of gene expression by AUF1: mechanisms, physiological targets, and regulation. Biochim. Biophys. Acta 1829, 680–688 (2013).
pubmed: 23246978
Lu, J. Y., Sadri, N. & Schneider, R. J. Endotoxic shock in AUF1 knockout mice mediated by failure to degrade proinflammatory cytokine mRNAs. Genes Dev. 20, 3174–3184 (2006).
pmcid: 1635151
pubmed: 17085481
Sadri, N. & Schneider, R. J. Auf1/Hnrnpd-deficient mice develop pruritic inflammatory skin disease. J. Invest. Dermatol. 129, 657–670 (2009).
pubmed: 18830269
Czepielewski, R. S. et al. Ileitis-associated tertiary lymphoid organs arise at lymphatic valves and impede mesenteric lymph flow in response to tumor necrosis factor. Immunity 54, 2795–2811.e2799 (2021).
pmcid: 8678349
pubmed: 34788601
Kontoyiannis, D., Pasparakis, M., Pizarro, T. T., Cominelli, F. & Kollias, G. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 10, 387–398 (1999).
pubmed: 10204494
Kontoyiannis, D. et al. Genetic dissection of the cellular pathways and signaling mechanisms in modeled tumor necrosis factor-induced Crohn’s-like inflammatory bowel disease. J. Exp. Med. 196, 1563–1574 (2002).
pmcid: 2196068
pubmed: 12486099
Mino, T. et al. Regnase-1 and roquin regulate a common element in inflammatory mRNAs by spatiotemporally distinct mechanisms. Cell 161, 1058–1073 (2015).
pubmed: 26000482
Amatya, N. et al. IL-17 integrates multiple self-reinforcing, feed-forward mechanisms through the RNA binding protein Arid5a. Sci. Signal. https://doi.org/10.1126/scisignal.aat4617 (2018).
doi: 10.1126/scisignal.aat4617
pmcid: 6188668
pubmed: 30301788
Garg, A. V. et al. MCPIP1 endoribonuclease activity negatively regulates interleukin-17-mediated signaling and inflammation. Immunity 43, 475–487 (2015).
pmcid: 4575280
pubmed: 26320658
Liu, B. et al. The RNase MCPIP3 promotes skin inflammation by orchestrating myeloid cytokine response. Nat. Commun. 12, 4105 (2021).
pmcid: 8253787
pubmed: 34215755
O’Connell, R. M., Zhao, J. L. & Rao, D. S. MicroRNA function in myeloid biology. Blood 118, 2960–2969 (2011).
pmcid: 3175776
pubmed: 21725054
Tili, E. et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-α stimulation and their possible roles in regulating the response to endotoxin shock. J. Immunol. 179, 5082–5089 (2007).
pubmed: 17911593
Faraoni, I., Antonetti, F. R., Cardone, J. & Bonmassar, E. miR-155 gene: a typical multifunctional microRNA. Biochim. Biophys. Acta 1792, 497–505 (2009).
pubmed: 19268705
Paoletti, A. et al. Monocyte/macrophage abnormalities specific to rheumatoid arthritis are linked to miR-155 and are differentially modulated by different TNF inhibitors. J. Immunol. 203, 1766–1775 (2019).
pmcid: 6755128
pubmed: 31484730
Paoletti, A. et al. Restoration of default blood monocyte-derived macrophage polarization with adalimumab but not etanercept in rheumatoid arthritis. Front. Immunol. 13, 832117 (2022).
pmcid: 8904384
pubmed: 35281074
Semaan, N. et al. miR-346 controls release of TNF-α protein and stability of its mRNA in rheumatoid arthritis via tristetraprolin stabilization. PLoS One 6, e19827 (2011).
pmcid: 3096642
pubmed: 21611196
Perez-Sanchez, C. et al. miR-374a-5p regulates inflammatory genes and monocyte function in patients with inflammatory bowel disease. J. Exp. Med. 9, https://doi.org/10.1084/jem.20211366 (2022).
Taganov, K. D., Boldin, M. P., Chang, K. J. & Baltimore, D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl Acad. Sci. USA 103, 12481–12486 (2006).
pmcid: 1567904
pubmed: 16885212
von Gamm, M. et al. Immune homeostasis and regulation of the interferon pathway require myeloid-derived Regnase-3. J. Exp. Med. 216, 1700–1723 (2019).
Winkler, R. et al. m
pubmed: 30559377
McFadden, M. J. & Horner, S. M. N
pubmed: 33309325
Banchereau, J. & Pascual, V. Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity 25, 383–392 (2006).
pubmed: 16979570
Wang, H. et al. Mettl3-mediated mRNA m
pmcid: 6478715
pubmed: 31015515
Han, D. et al. Anti-tumour immunity controlled through mRNA m
pmcid: 6522227
pubmed: 30728504
Aeschlimann, F. A. et al. A20 haploinsufficiency (HA20): clinical phenotypes and disease course of patients with a newly recognised NF-kB-mediated autoinflammatory disease. Ann. Rheum. Dis. 77, 728–735 (2018).
pubmed: 29317407
Tak, P. P. & Firestein, G. S. NF-κB: a key role in inflammatory diseases. J. Clin. Invest. 107, 7–11 (2001).
pmcid: 198552
pubmed: 11134171
Nocturne, G. et al. Germline and somatic genetic variations of TNFAIP3 in lymphoma complicating primary Sjögren’s syndrome. Blood 122, 4068–4076 (2013).
pmcid: 3862283
pubmed: 24159176
Niu, J. et al. USP10 inhibits genotoxic NF-κB activation by MCPIP1-facilitated deubiquitination of NEMO. EMBO J. 32, 3206–3219 (2013).
pmcid: 3981146
pubmed: 24270572
Perry, M. M. et al. Rapid changes in microRNA-146a expression negatively regulate the IL-1β-induced inflammatory response in human lung alveolar epithelial cells. J. Immunol. 180, 5689–5698 (2008).
pubmed: 18390754
Zhu, S. et al. The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-α. Nat. Med. 18, 1077–1086 (2012).
pubmed: 22660635
Prescott, J. A., Mitchell, J. P. & Cook, S. J. Inhibitory feedback control of NF-κB signalling in health and disease. Biochem. J. 478, 2619–2664 (2021).
pubmed: 34269817
Skalniak, L. et al. Regulatory feedback loop between NF-κB and MCP-1-induced protein 1 RNase. FEBS J. 276, 5892–5905 (2009).
pubmed: 19747262
Schichl, Y. M., Resch, U., Hofer-Warbinek, R. & de Martin, R. Tristetraprolin impairs NF-κB/p65 nuclear translocation. J. Biol. Chem. 284, 29571–29581 (2009).
pmcid: 2785590
pubmed: 19654331
Zhang, W., Vreeland, A. C. & Noy, N. RNA-binding protein HuR regulates nuclear import of protein. J. Cell Sci. 129, 4025–4033 (2016).
pmcid: 5117209
pubmed: 27609837
Gantier, M. P. et al. A miR-19 regulon that controls NF-κB signaling. Nucleic Acids Res. 40, 8048–8058 (2012).
pmcid: 3439911
pubmed: 22684508
Marshak-Rothstein, A. Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol. 6, 823–835 (2006).
pmcid: 7097510
pubmed: 17063184
Wells, C. A. et al. Alternate transcription of the Toll-like receptor signaling cascade. Genome Biol. 7, R10 (2006).
pmcid: 1431733
pubmed: 16507160
Noack, M. & Miossec, P. Importance of lymphocyte-stromal cell interactions in autoimmune and inflammatory rheumatic diseases. Nat. Rev. Rheumatol. 17, 550–564 (2021).
pubmed: 34345021
Buckley, C. D., Ospelt, C., Gay, S. & Midwood, K. S. Location, location, location: how the tissue microenvironment affects inflammation in RA. Nat. Rev. Rheumatol. 17, 195–212 (2021).
pubmed: 33526927
Riviere, E. et al. Interleukin-7/interferon axis drives T cell and salivary gland epithelial cell interactions in Sjögren’s syndrome. Arthritis Rheumatol. 73, 631–640 (2021).
pubmed: 33058491
Verstappen, G. M., Pringle, S., Bootsma, H. & Kroese, F. G. M. Epithelial–immune cell interplay in primary Sjögren syndrome salivary gland pathogenesis. Nat. Rev. Rheumatol. 17, 333–348 (2021).
pmcid: 8081003
pubmed: 33911236
Nowarski, R., Jackson, R. & Flavell, R. A. The stromal intervention: regulation of immunity and inflammation at the epithelial-mesenchymal barrier. Cell 168, 362–375 (2017).
pubmed: 28129537
Riviere, E. et al. Salivary gland epithelial cells from patients with Sjögren’s syndrome induce B-lymphocyte survival and activation. Ann. Rheum. Dis. 79, 1468–1477 (2020).
pubmed: 32843324
Angiolilli, C. et al. ZFP36 family members regulate the proinflammatory features of psoriatic dermal fibroblasts. J. Invest. Dermatol. 142, 402–413 (2022).
pubmed: 34333017
Koliaraki, V., Prados, A., Armaka, M. & Kollias, G. The mesenchymal context in inflammation, immunity and cancer. Nat. Immunol. https://doi.org/10.1038/s41590-020-0741-2 (2020).
doi: 10.1038/s41590-020-0741-2
pubmed: 32747813
Krausgruber, T. et al. Structural cells are key regulators of organ-specific immune responses. Nature 583, 296–302 (2020).
pmcid: 7610345
pubmed: 32612232
Nygaard, G. & Firestein, G. S. Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes. Nat. Rev. Rheumatol. https://doi.org/10.1038/s41584-020-0413-5 (2020).
doi: 10.1038/s41584-020-0413-5
pmcid: 7987137
pubmed: 32393826
Dasoveanu, D. C. et al. Lymph node stromal CCL2 limits antibody responses. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aaw0693 (2020).
doi: 10.1126/sciimmunol.aaw0693
pmcid: 7490901
pubmed: 32198221
Martin, E. W., Pacholewska, A., Patel, H., Dashora, H. & Sung, M. H. Integrative analysis suggests cell type-specific decoding of NF-κB dynamics. Sci. Signal. https://doi.org/10.1126/scisignal.aax7195 (2020).
doi: 10.1126/scisignal.aax7195
pmcid: 7597377
pubmed: 32963012
Bordon, Y. Stromal support from IL-17. Nat. Rev. Immunol. 19, 270–271 (2019).
pubmed: 30971770
de Oliveira, P. G., Farinon, M., Sanchez-Lopez, E., Miyamoto, S. & Guma, M. Fibroblast-like synoviocytes glucose metabolism as a therapeutic target in rheumatoid arthritis. Front. Immunol. 10, 1743 (2019).
pmcid: 6688519
pubmed: 31428089
Saeki, N. et al. Epigenetic regulator UHRF1 orchestrates proinflammatory gene expression in rheumatoid arthritis in a suppressive manner. J. Clin. Invest. https://doi.org/10.1172/JCI150533 (2022).
doi: 10.1172/JCI150533
pmcid: 9151705
pubmed: 35472067
Gall, A. et al. Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity 36, 120–131 (2012).
pmcid: 3269499
pubmed: 22284419
Koliaraki, V., Dotto, G. P., Buckley, C. D. & Kollias, G. Mesenchymal cells in health and disease. Nat. Immunol. 23, 1395–1398 (2022).
pubmed: 36163467
Li, X., Bechara, R., Zhao, J., McGeachy, M. J. & Gaffen, S. L. IL-17 receptor-based signaling and implications for disease. Nat. Immunol. 20, 1594–1602 (2019).
pmcid: 6943935
pubmed: 31745337
Bechara, R., McGeachy, M. J. & Gaffen, S. L. The metabolism-modulating activity of IL-17 signaling in health and disease. J. Exp. Med. https://doi.org/10.1084/jem.20202191 (2021).
doi: 10.1084/jem.20202191
pmcid: 8025242
pubmed: 33822846
Monin, L. et al. MCPIP1/Regnase-1 restricts IL-17A- and IL-17C-dependent skin inflammation. J. Immunol. 198, 767–775 (2017).
pubmed: 27920272
Li, D. D. et al. RTEC-intrinsic IL-17-driven inflammatory circuit amplifies antibody-induced glomerulonephritis and is constrained by Regnase-1. JCI Insight https://doi.org/10.1172/jci.insight.147505 (2021).
doi: 10.1172/jci.insight.147505
pmcid: 8783692
pubmed: 34935644
Herjan, T. et al. IL-17-receptor-associated adaptor Act1 directly stabilizes mRNAs to mediate IL-17 inflammatory signaling. Nat. Immunol. 19, 354–365 (2018).
pmcid: 6082628
pubmed: 29563620
Herjan, T. et al. HuR is required for IL-17-induced Act1-mediated CXCL1 and CXCL5 mRNA stabilization. J. Immunol. 191, 640–649 (2013).
pubmed: 23772036
Bechara, R. et al. The m
doi: 10.1126/sciimmunol.abd1287
pmcid: 8404281
pubmed: 34215679
Bechara, R. et al. The RNA-binding protein IMP2 drives a stromal-Th17 cell circuit in autoimmune neuroinflammation. JCI Insight https://doi.org/10.1172/jci.insight.152766 (2022).
doi: 10.1172/jci.insight.152766
pmcid: 8855811
pubmed: 34914635
Mueller, S. N. IL-17 instructs lymphoid stromal cells. Nat. Immunol. 20, 524–526 (2019).
pubmed: 30962592
Majumder, S. et al. IL-17 metabolically reprograms activated fibroblastic reticular cells for proliferation and survival. Nat. Immunol. 20, 534–545 (2019).
pmcid: 6519710
Qiu, L. Q., Stumpo, D. J. & Blackshear, P. J. Myeloid-specific tristetraprolin deficiency in mice results in extreme lipopolysaccharide sensitivity in an otherwise minimal phenotype. J. Immunol. 188, 5150–5159 (2012).
pubmed: 22491258
Andrianne, M. et al. Tristetraprolin expression by keratinocytes controls local and systemic inflammation. JCI Insight https://doi.org/10.1172/jci.insight.92979 (2017).
doi: 10.1172/jci.insight.92979
pmcid: 5453703
pubmed: 28570274
Liu, L. et al. Zc3h12c inhibits vascular inflammation by repressing NF-κB activation and pro-inflammatory gene expression in endothelial cells. Biochem. J. 451, 55–60 (2013).
pubmed: 23360436
Wan, Q., Zhou, Z., Ding, S. & He, J. The miR-30a negatively regulates IL-17-mediated signal transduction by targeting Traf3ip2. J. Interferon Cytokine Res. 35, 917–923 (2015).
pubmed: 26376209
Dhuppar, S. & Murugaiyan, G. miRNA effects on gut homeostasis: therapeutic implications for inflammatory bowel disease. Trends Immunol. https://doi.org/10.1016/j.it.2022.09.003 (2022).
doi: 10.1016/j.it.2022.09.003
pubmed: 36220689
Jimenez, M. T. et al. The miR-181 family regulates colonic inflammation through its activity in the intestinal epithelium. J. Exp. Med. https://doi.org/10.1084/jem.20212278 (2022).
doi: 10.1084/jem.20212278
pmcid: 9462864
pubmed: 36074090
Junker, A. et al. MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain 132, 3342–3352 (2009).
pubmed: 19952055
Stanczyk, J. et al. Altered expression of microRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum. 58, 1001–1009 (2008).
pubmed: 18383392
Saito, Y. et al. AT-rich-interactive domain-containing protein 5A functions as a negative regulator of retinoic acid receptor-related orphan nuclear receptor γt-induced Th17 cell differentiation. Arthritis Rheumatol. 66, 1185–1194 (2014).
pubmed: 24782182
Cook, C. P. et al. A single-cell transcriptional gradient in human cutaneous memory T cells restricts Th17/Tc17 identity. Cell Rep. Med. 3, 100715 (2022).
pmcid: 9418858
pubmed: 35977472
Tsutsumi, A. et al. Expression of tristetraprolin (G0S24) mRNA, a regulator of tumor necrosis factor-alpha production, in synovial tissues of patients with rheumatoid arthritis. J. Rheumatol. 31, 1044–1049 (2004).
pubmed: 15170914
Ross, E. A. et al. Treatment of inflammatory arthritis via targeting of tristetraprolin, a master regulator of pro-inflammatory gene expression. Ann. Rheum. Dis. 76, 612–619 (2017).
pubmed: 27597652
Di Silvestre, A. et al. Role of tristetraprolin phosphorylation in paediatric patients with inflammatory bowel disease. World J. Gastroenterol. 25, 5918–5925 (2019).
pmcid: 6815796
pubmed: 31660029
Castello, A. et al. Comprehensive identification of RNA-binding domains in human cells. Mol. Cell 63, 696–710 (2016).
pmcid: 5003815
pubmed: 27453046
Tavernier, S. J. et al. A human immune dysregulation syndrome characterized by severe hyperinflammation with a homozygous nonsense Roquin-1 mutation. Nat. Commun. 10, 4779 (2019).
pmcid: 6803705
pubmed: 31636267
Tsoi, L. C. et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat. Genet. 44, 1341–1348 (2012).
pmcid: 3510312
pubmed: 23143594
Carrick, D. M. et al. Genetic variations in ZFP36 and their possible relationship to autoimmune diseases. J. Autoimmun. 26, 182–196 (2006).
pubmed: 16546352
Hinks, A. et al. Dense genotyping of immune-related disease regions identifies 14 new susceptibility loci for juvenile idiopathic arthritis. Nat. Genet. 45, 664–669 (2013).
pmcid: 3673707
pubmed: 23603761
Franke, A. et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat. Genet. 42, 1118–1125 (2010).
pmcid: 3299551
pubmed: 21102463
International Multiple Sclerosis Genetics, C. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science https://doi.org/10.1126/science.aav7188 (2019).
doi: 10.1126/science.aav7188
Skriner, K. et al. AUF1, the regulator of tumor necrosis factor α messenger RNA decay, is targeted by autoantibodies of patients with systemic rheumatic diseases. Arthritis Rheum. 58, 511–520 (2008).
pubmed: 18240226
Hung, T. et al. The Ro60 autoantigen binds endogenous retroelements and regulates inflammatory gene expression. Science 350, 455–459 (2015).
pmcid: 4691329
pubmed: 26382853
Clark, G., Reichlin, M. & Tomasi, T. B. Jr. Characterization of a soluble cytoplasmic antigen reactive with sera from patients with systemic lupus erythematosus. J. Immunol. 102, 117–122 (1969).
pubmed: 4179557
Alspaugh, M. & Maddison, P. Resolution of the identity of certain antigen–antibody systems in systemic lupus erythematosus and Sjögren’s syndrome: an interlaboratory collaboration. Arthritis Rheum. 22, 796–798 (1979).
pubmed: 110340
Soret, P. et al. A new molecular classification to drive precision treatment strategies in primary Sjögren’s syndrome. Nat. Commun. 12, 3523 (2021).
pmcid: 8192578
pubmed: 34112769
Kirou, K. A. et al. Activation of the interferon-α pathway identifies a subgroup of systemic lupus erythematosus patients with distinct serologic features and active disease. Arthritis Rheum. 52, 1491–1503 (2005).
pubmed: 15880830
Baechler, E. C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl Acad. Sci. USA 100, 2610–2615 (2003).
pmcid: 151388
pubmed: 12604793
Mariette, X. et al. The level of BLyS (BAFF) correlates with the titre of autoantibodies in human Sjögren’s syndrome. Ann. Rheum. Dis. 62, 168–171 (2003).
pmcid: 1754442
pubmed: 12525388
Maraia, R. J., Sasaki-Tozawa, N., Driscoll, C. T., Green, E. D. & Darlington, G. J. The human Y4 small cytoplasmic RNA gene is controlled by upstream elements and resides on chromosome 7 with all other hY scRNA genes. Nucleic Acids Res. 22, 3045–3052 (1994).
pmcid: 310274
pubmed: 7520568
Schlee, M. & Hartmann, G. Discriminating self from non-self in nucleic acid sensing. Nat. Rev. Immunol. 16, 566–580 (2016).
pmcid: 7097691
pubmed: 27455396
Devarkar, S. C. et al. Structural basis for m7G recognition and 2’-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I. Proc. Natl Acad. Sci. USA 113, 596–601 (2016).
pmcid: 4725518
pubmed: 26733676
Despic, V. & Jaffrey, S. R. mRNA ageing shapes the Cap2 methylome in mammalian mRNA. Nature 614, 358–366 (2023).
pmcid: 9891201
pubmed: 36725932
Zust, R. et al. Ribose 2’-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat. Immunol. 12, 137–143 (2011).
pmcid: 3182538
pubmed: 21217758
Hubbard, N. W. et al. ADAR1 mutation causes ZBP1-dependent immunopathology. Nature 607, 769–775 (2022).
pmcid: 9339495
pubmed: 35859177
de Reuver, R. et al. ADAR1 prevents autoinflammation by suppressing spontaneous ZBP1 activation. Nature 607, 784–789 (2022).
pubmed: 35859175
Jiao, H. et al. ADAR1 averts fatal type I interferon induction by ZBP1. Nature 607, 776–783 (2022).
pmcid: 9329096
pubmed: 35859176
Liddicoat, B. J. et al. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 349, 1115–1120 (2015).
pmcid: 5444807
pubmed: 26275108
Pestal, K. et al. Isoforms of RNA-editing enzyme ADAR1 independently control nucleic acid sensor MDA5-driven autoimmunity and multi-organ development. Immunity 43, 933–944 (2015).
pmcid: 4654992
pubmed: 26588779
Rice, G. I. et al. Mutations in ADAR1 cause Aicardi-Goutieres syndrome associated with a type I interferon signature. Nat. Genet. 44, 1243–1248 (2012).
pmcid: 4154508
pubmed: 23001123
Wolf, C. & Lee-Kirsch, M. A. Keeping immunostimulatory self-RNA under the rADAR. Nat. Rev. Rheumatol. https://doi.org/10.1038/s41584-022-00859-4 (2022).
doi: 10.1038/s41584-022-00859-4
pubmed: 36203062
Roberts, T. C., Langer, R. & Wood, M. J. A. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 19, 673–694 (2020).
pmcid: 7419031
pubmed: 32782413
Crooke, S. T., Witztum, J. L., Bennett, C. F. & Baker, B. F. RNA-targeted therapeutics. Cell Metab. 27, 714–739 (2018).
pubmed: 29617640
Rupaimoole, R. & Slack, F. J. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 16, 203–222 (2017).
pubmed: 28209991
Garber, K. mRNA pioneers refocus on therapeutics. Nat. Rev. Drug Discov. 21, 699–701 (2022).
pubmed: 36109614
Childs-Disney, J. L. et al. Targeting RNA structures with small molecules. Nat. Rev. Drug Discov. 21, 736–762 (2022).
pmcid: 9360655
pubmed: 35941229
Mino, T. & Takeuchi, O. Regnase-1-related endoribonucleases in health and immunological diseases. Immunol. Rev. 304, 97–110 (2021).
pubmed: 34514623
Yankova, E. et al. Small molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature https://doi.org/10.1038/s41586-021-03536-w (2021).
doi: 10.1038/s41586-021-03536-w
pmcid: 7613134
pubmed: 33902106
Masuda, K. & Kishimoto, T. A potential therapeutic target RNA-binding protein, Arid5a for the treatment of inflammatory disease associated with aberrant cytokine expression. Curr. Pharm. Des. 24, 1766–1771 (2018).
pubmed: 29701145
Hoefig, K. P. et al. Defining the RBPome of primary T helper cells to elucidate higher-order Roquin-mediated mRNA regulation. Nat. Commun. 12, 5208 (2021).
pmcid: 8410761
pubmed: 34471108
Keene, J. D. RNA regulons: coordination of post-transcriptional events. Nat. Rev. Genet. 8, 533–543 (2007).
pubmed: 17572691
Xiao, Y. L. et al. Transcriptome-wide profiling and quantification of N
doi: 10.1038/s41587-022-01587-6
pubmed: 37443392
Sun, W. et al. Genetically encoded chemical crosslinking of RNA in vivo. Nat. Chem. https://doi.org/10.1038/s41557-022-01038-4 (2022).
doi: 10.1038/s41557-022-01038-4
pmcid: 9899690
pubmed: 36411361
Tegowski, M., Flamand, M. N. & Meyer, K. D. scDART-seq reveals distinct m
pmcid: 8857065
pubmed: 35081365
Zhao, Z., Ukidve, A., Kim, J. & Mitragotri, S. Targeting strategies for tissue-specific drug delivery. Cell 181, 151–167 (2020).
pubmed: 32243788
Mukherjee, N. et al. Global target mRNA specification and regulation by the RNA-binding protein ZFP36. Genome Biol. 15, R12 (2014).
pmcid: 4053807
pubmed: 24401661
Chen, J. et al. The RNA-binding protein HuR contributes to neuroinflammation by promoting C-C chemokine receptor 6 (CCR6) expression on Th17 cells. J. Biol. Chem. 292, 14532–14543 (2017).
pmcid: 5582845
pubmed: 28684423
Du, C. et al. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat. Immunol. 10, 1252–1259 (2009).
pubmed: 19838199
Kohlhaas, S. et al. Cutting edge: the Foxp3 target miR-155 contributes to the development of regulatory T cells. J. Immunol. 182, 2578–2582 (2009).
pubmed: 19234151
O’Connell, R. M. et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 33, 607–619 (2010).
pmcid: 2966521
pubmed: 20888269
Hu, R. et al. MicroRNA-155 confers encephalogenic potential to Th17 cells by promoting effector gene expression. J. Immunol. 190, 5972–5980 (2013).
pubmed: 23686497
Lu, L. F. et al. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell 142, 914–929 (2010).
pmcid: 3049116
pubmed: 20850013
Boldin, M. P. et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J. Exp. Med. 208, 1189–1201 (2011).
pmcid: 3173243
pubmed: 21555486
He, P. C. et al. Exon architecture controls mRNA m
pubmed: 36705538
Uzonyi, A. et al. Exclusion of m6A from splice-site proximal regions by the exon junction complex dictates m6A topologies and mRNA stability. Mol. Cell 83, 237–251 e237 (2023).
pubmed: 36599352
Thompson, M. G., Sacco, M. T. & Horner, S. M. How RNA modifications regulate the antiviral response. Immunol. Rev. https://doi.org/10.1111/imr.13020 (2021).
doi: 10.1111/imr.13020
pmcid: 8616813
pubmed: 34405413
Zheng, Q., Hou, J., Zhou, Y., Li, Z. & Cao, X. The RNA helicase DDX46 inhibits innate immunity by entrapping m
pubmed: 28846086
Kariko, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005).
pubmed: 16111635
Durbin, A. F., Wang, C., Marcotrigiano, J. & Gehrke, L. RNAs containing modified nucleotides fail to trigger RIG-I conformational changes for innate immune signaling. mBio https://doi.org/10.1128/mBio.00833-16 (2016).
doi: 10.1128/mBio.00833-16
pmcid: 5030355
pubmed: 27651356
Luo, S. et al. METTL3-mediated m6A mRNA methylation regulates neutrophil activation through targeting TLR4 signaling. Cell Rep. 42, 112259 (2023).
pubmed: 36920907
Song, H. et al. METTL3-mediated m
pmcid: 8448775
pubmed: 34535671
Ding, C. et al. RNA m
pmcid: 9388086
pubmed: 35939687
Cho, J. H. & Feldman, M. Heterogeneity of autoimmune diseases: pathophysiologic insights from genetics and implications for new therapies. Nat. Med. 21, 730–738 (2015).
pmcid: 5716342
pubmed: 26121193