Characterization of the Immediate and Delayed Biomechanical Response to UV-A Crosslinking of Human Corneas.
Journal
Cornea
ISSN: 1536-4798
Titre abrégé: Cornea
Pays: United States
ID NLM: 8216186
Informations de publication
Date de publication:
01 Sep 2023
01 Sep 2023
Historique:
received:
27
02
2023
accepted:
26
05
2023
medline:
7
8
2023
pubmed:
19
6
2023
entrez:
19
6
2023
Statut:
ppublish
Résumé
Keratoconus leads to visual deterioration due to irregular astigmatism and corneal thinning. Riboflavin-based corneal UV-A crosslinking (CXL) induces novel intramolecular and intermolecular links resulting in corneal tissue stiffening, thereby halting disease progression. The purpose of this study was to analyze the immediate and delayed biomechanical responses of human donor corneas to CXL. CXL was performed according to the Dresden protocol to corneas not suitable for transplantation. Biomechanical properties were subsequently monitored by measuring the Young modulus using nanoindentation. The immediate tissue response was determined after 0, 1, 15, and 30 minutes of irradiation. Delayed biomechanical effects were investigated with follow-up measurements immediately and 1, 3, and 7 days after CXL. Young's modulus indicated a linear trend in direct response to increasing irradiation times (mean values: total 61.31 kPa [SD 25.53], 0 minutes 48.82 kPa [SD 19.73], 1 minute 53.44 kPa [SD 25.95], 15 minutes 63.56 kPa [SD 20.99], and 30 minutes 76.76 kPa [SD 24.92]). The linear mixed model for the elastic response of corneal tissue was 49.82 kPa + (0.91 kPa/min × time [minutes]); P < 0.001. The follow-up measurements showed no significant delayed changes in the Young modulus (mean values: total 55,28 kPa [SD 15.95], immediately after CXL 56,83 kPa [SD 18.74], day 1 50.28 kPa [SD 14.15], day 3 57.08 kPa [SD 14.98], and day 7 56.83 kPa [SD 15.07]). This study suggests a linear increase of corneal Young modulus as a function of CXL timing. No significant short-term delayed biomechanical changes posttreatment were observed.
Identifiants
pubmed: 37335854
doi: 10.1097/ICO.0000000000003336
pii: 00003226-990000000-00318
doi:
Substances chimiques
Cross-Linking Reagents
0
Riboflavin
TLM2976OFR
Photosensitizing Agents
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1163-1171Informations de copyright
Copyright © 2023 Wolters Kluwer Health, Inc. All rights reserved.
Déclaration de conflit d'intérêts
The authors declare no conflict of interest. No funding was received for this study.
Références
Nath S, Shen C, Koziarz A, et al. Protocol for a systematic review, meta-analysis, and trial sequential analysis of clinical outcomes following accelerated versus conventional corneal collagen cross-linking for corneal ectasia. Syst Rev. 2019;8:85.
Romero-Jiménez M, Santodomingo-Rubido J, Wolffsohn JS. Keratoconus: a review. Cont Lens Anterior Eye. 2010;33:157–166; quiz 205.
Sahebjada S, Xie J, Chan E, et al. Assessment of anterior segment parameters of keratoconus eyes in an Australian population. Optom Vis Sci. 2014;91:803–809.
Andreassen TT, Hjorth Simonsen A, Oxlund H. Biomechanical properties of keratoconus and normal corneas. Exp Eye Res. 1980;31:435–441.
Mikula E, Winkler M, Juhasz T, et al. Axial mechanical and structural characterization of keratoconus corneas. Exp Eye Res. 2018;175:14–19.
Mikula ER, Jester JV, Juhasz T. Measurement of an elasticity map in the human cornea. Invest Ophthalmol Vis Sci. 2016;57:3282–3286.
Subasinghe SK, Ogbuehi KC, Dias GJ. Current perspectives on corneal collagen crosslinking (CXL). Graefes Arch Clin Exp Ophthalmol. 2018;256:1363–1384.
Wollensak G, SPOERL E, SEILER T. Riboflavin/ultraviolet-a–induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135:620–627.
Spoerl E, Huhle M, Seiler T. Induction of cross-links in corneal tissue. Exp Eye Res. 1998;66:97–103.
Scarcelli G, Kling S, Quijano E, et al. Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus. Invest Ophthalmol Vis Sci. 2013;54:1418–1425.
Lang SJ, Messmer EM, Geerling G, et al. Prospective, randomized, double-blind trial to investigate the efficacy and safety of corneal cross-linking to halt the progression of keratoconus. BMC Ophthalmol. 2015;15:78.
Wittig-Silva C, Chan E, Islam FMA, et al. A randomized, controlled trial of corneal collagen cross-linking in progressive keratoconus: three-year results. Ophthalmology. 2014;121:812–821.
Hashemi H, Seyedian MA, Miraftab M, et al. Corneal collagen cross-linking with riboflavin and ultraviolet a irradiation for keratoconus: long-term results. Ophthalmology. 2013;120:1515–1520.
Poli M, Cornut P-L, Balmitgere T, et al. Prospective study of corneal collagen cross-linking efficacy and tolerance in the treatment of keratoconus and corneal ectasia: 3-year results. Cornea. 2013;32:583–590.
Woo JH, Iyer JV, Lim L, et al. Conventional versus accelerated collagen cross-linking for keratoconus: a comparison of visual, refractive, topographic and biomechanical outcomes. Open Ophthalmol J. 2017;11:262–272.
III. Photochemical researches.—Part V. On the measurement of the chemical action of direct and diffuse sunlight. Proc Biol Sci. 1863;12:306–312.
Lim L, Lim EWL. A review of corneal collagen cross-linking - current trends in practice applications. Open Ophthalmol J. 2018;12:181–213.
Kamaev P, Friedman MD, Sherr E, et al. Photochemical kinetics of corneal cross-linking with riboflavin. Invest Ophthalmol Vis Sci. 2012;53:2360–2367.
Mastropasqua L. Collagen cross-linking: when and how? A review of the state of the art of the technique and new perspectives. Eye Vis. 2015;2:19.
Meek KM, Hayes S. Corneal cross-linking—a review. Ophthalmic Physiol Opt. 2013;33:78–93.
Gould G, Jinabhai A, Radhakrishna H. Transepithelial corneal collagen cross-linking for keratoconus: a review. Optom Pract. 2016;17:149–158.
Marshall J, Wilson A. A review of corneal biomechanics: mechanisms for measurement and the implications for refractive surgery. Indian J Ophthalmol. 2020;68:2679–2690.
Wollensak G, Spoerl E, Seiler T. Stress-strain measurements of human and porcine corneas after riboflavin–ultraviolet-A-induced cross-linking. J Cataract Refract Surg. 2003;29:1780–1785.
Greenstein SA, Fry KL, Hersh PS. In vivo biomechanical changes after corneal collagen cross-linking for keratoconus and corneal ectasia: 1-year analysis of a randomized, controlled, clinical trial. Cornea. 2012;31:21–25.
Vinciguerra P, Albè E, Mahmoud AM, et al. Intra- and postoperative variation in ocular response analyzer parameters in keratoconic eyes after corneal cross-linking. J Refract Surg. 2010;26:669–676.
Dias J, Diakonis VF, Kankariya VP, et al. Anterior and posterior corneal stroma elasticity after corneal collagen crosslinking treatment. Exp Eye Res. 2013;116:58–62.
Last JA, Liliensiek SJ, Nealey PF, et al. Determining the mechanical properties of human corneal basement membranes with atomic force microscopy. J Struct Biol. 2009;167:19–24.
Lanchares E, Del Buey MA, Cristóbal JA, et al. Biomechanical property analysis after corneal collagen cross-linking in relation to ultraviolet A irradiation time. Graefes Arch Clin Exp Ophthalmol. 2011;249:1223–1227.
Swain MV, Nohava J, Eberwein P. A simple basis for determination of the modulus and hydraulic conductivity of human ocular surface using nano-indentation. Acta Biomater. 2017;50:312–321.
Scarcelli G, Pineda R, Yun SH. Brillouin optical microscopy for corneal biomechanics. Invest Ophthalmol Vis Sci. 2012;53:185–190.
Seiler TG, Shao P, Eltony A, et al. Brillouin spectroscopy of normal and keratoconus corneas. Am J Ophthalmol. 2019;202:118–125.
Ford MR, Dupps WJ, Rollins AM, et al. Method for optical coherence elastography of the cornea. J Biomed Opt. 2011;16:016005.
Kling S, Khodadadi H, Goksel O. Optical coherence elastography-based corneal strain imaging during low-amplitude intraocular pressure modulation. Front Bioeng Biotechnol. 2019;7:453.
Boyce BL, Grazier JM, Jones RE, et al. Full-field deformation of bovine cornea under constrained inflation conditions. Biomaterials. 2008;29:3896–3904.
Whitford C, Joda A, Jones S, et al. Ex vivo testing of intact eye globes under inflation conditions to determine regional variation of mechanical stiffness. Eye Vis. 2016;3:21.
Clayson K, Pavlatos E, Pan X, et al. Ocular pulse elastography: imaging corneal biomechanical responses to simulated ocular pulse using ultrasound. Transl Vis Sci Technol. 2020;9:5.
Pavlatos E, Chen H, Clayson K, et al. Imaging corneal biomechanical responses to ocular pulse using high-frequency ultrasound. IEEE Trans Med Imaging. 2018;37:663–670.
Dias JM, Ziebarth NM. Anterior and posterior corneal stroma elasticity assessed using nanoindentation. Exp Eye Res. 2013;115:41–46.
Nohava J, Swain M, Lang SJ, et al. Instrumented indentation for determination of mechanical properties of human cornea after ultraviolet-A crosslinking. J Biomed Mater Res A. 2018;106:1413–1420.
Eberwein P, Nohava J, Schlunck G, et al. Nanoindentation Derived Mechanical Properties of the Corneoscleral Rim of the Human Eye. Key Eng Mater. 2014;606:117–120.
Seifert J, Hammer CM, Rheinlaender J, et al. Distribution of Young's modulus in porcine corneas after riboflavin/UVA-induced collagen cross-linking as measured by atomic force microscopy. PLoS One. 2014;9:e88186.
Nohava J. Users Guide Anton Paar Bioindenter (UNHT 3 Bio). Buchs, Switzerland.
Hammer A, Richoz O, Mosquera SA, et al. Corneal biomechanical properties at different corneal cross-linking (CXL) irradiances. Invest Ophthalmol Vis Sci. 2014;55:2881–2884.
Boote C, Dennis S, Huang Y, et al. Lamellar orientation in human cornea in relation to mechanical properties. J Struct Biol. 2005;149:1–6.
Abass A, Hayes S, White N, et al. Transverse depth-dependent changes in corneal collagen lamellar orientation and distribution. J R Soc Interf. 2015;12:20140717.
Koller T, Schumacher S, Fankhauser F, et al. Riboflavin/ultraviolet a crosslinking of the paracentral cornea. Cornea. 2013;32:165–168.
Lombardo M, Pucci G, Barberi R, et al. Interaction of ultraviolet light with the cornea: clinical implications for corneal crosslinking. J Cataract Refract Surg. 2015;41:446–459.
Hallahan KM, Rocha K, Sinha RA, et al. Effects of corneal cross-linking on ocular response analyzer waveform-derived variables in keratoconus and postrefractive surgery ectasia. Eye Contact Lens: Sci Clin Pract. 2014;40:339–344.
Wittig-Silva C, Whiting M, Lamoureux E, et al. A randomized controlled trial of corneal collagen cross-linking in progressive keratoconus: preliminary results. J Refract Surg. 2008;24:S720–S725.
Tang Y, Song W, Qiao J, et al. A study of corneal structure and biomechanical properties after collagen crosslinking with genipin in rabbit corneas. Mol Vis. 2019;25:574–582.
Costa KD, Yin FC. Analysis of indentation: implications for measuring mechanical properties with atomic force microscopy. J Biomech Eng. 1999;121:462–471.
Last JA, Thomasy SM, Croasdale CR, et al. Compliance profile of the human cornea as measured by atomic force microscopy. Micron. 2012;43:1293–1298.
Ruberti JW, Klyce SD. Physiological system models of the cornea. In: Hung GK, Ciuffreda KJ, eds. Models of the Visual System. Boston, MA: Springer US; 2002:3–55.
Swain MV, Schroeter N, Nohava J, et al. Indentation of the cornea: a Bi-layer contact problem. J Mech Behav Biomed Mater. 2021;118:104463.
Robin JB, Schanzlin DJ, Verity SM, et al. Peripheral corneal disorders. Surv Ophthalmol. 1986;31:1–36.
Schumacher S, Mrochen M, Wernli J, et al. Optimization model for UV-riboflavin corneal cross-linking. Invest Ophthalmol Vis Sci. 2012;53:762–769.