Inflammatory responses during trichomoniasis: The role of Toll-like receptors and inflammasomes.


Journal

Parasite immunology
ISSN: 1365-3024
Titre abrégé: Parasite Immunol
Pays: England
ID NLM: 7910948

Informations de publication

Date de publication:
08 2023
Historique:
revised: 01 06 2023
received: 13 02 2023
accepted: 05 06 2023
medline: 21 7 2023
pubmed: 20 6 2023
entrez: 20 6 2023
Statut: ppublish

Résumé

Toll-like receptors (TLRs) and inflammasomes belong to the pattern recognition receptors (PRRs) of innate immunity identifying conserved compounds produced by pathogens or discharged by injured cells. Different cell subsets in the human urogenital system, such as epithelial cells and infiltrating leukocytes, express different kinds of TLRs (such as TLR2, TLR3, TLR4, TLR5 and TLR9) as well as inflammasomes (such as NLRP3, NLRC4 and AIM2). Various types of the Trichomonas vaginalis-derived components such as glycosyl-phosphatidylinositol (GPI), T. vaginalis virus (TVV), Lipophosphoglycan (LPG) and flagellin can be recognized by TLR2, TLR3, TLR4 and TLR5, respectively, leading to the production of proinflammatory cytokines and chemokines in the cervicovaginal mucosa. The T. vaginalis-induced inflammasomes can lead to pyroptosis as well as the release of IL-1β and IL-18 promoting innate and adaptive immune responses. The PRR-mediated responses to T. vaginalis may contribute to the induction of protective immune responses, local inflammation, promotion of co-infections, or even the development of malignancies, for example, prostate cancer. The protective or pathogenic roles of the TLRs and inflammasomes during trichomoniasis are highlighted in this review. A better understanding of PRR-mediated responses provides invaluable insights to develop effective immunotherapeutic strategies against T. vaginalis infection.

Identifiants

pubmed: 37338019
doi: 10.1111/pim.13000
doi:

Substances chimiques

Inflammasomes 0
Toll-Like Receptor 2 0
Toll-Like Receptor 4 0
Toll-Like Receptor 3 0
Toll-Like Receptor 5 0
Toll-Like Receptors 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

e13000

Informations de copyright

© 2023 John Wiley & Sons Ltd.

Références

Meites E, Gaydos CA, Hobbs MM, et al. A review of evidence-based care of symptomatic trichomoniasis and asymptomatic trichomonas vaginalis infections. Clin Infect Dis. 2015;61(Suppl 8):S837-S848.
Mercer F, Johnson PJ. Trichomonas vaginalis: pathogenesis, symbiont interactions, and host cell immune responses. Trends Parasitol. 2018;34(8):683-693.
Van Gerwen OT, Muzny CA. Recent advances in the epidemiology, diagnosis, and management of trichomonas vaginalis infection. F1000Research. 2019;8:8.
Hezarjaribi HZ, Fakhar M, Shokri A, Teshnizi SH, Sadough A, Taghavi M. Trichomonas vaginalis infection among Iranian general population of women: a systematic review and meta-analysis. Parasitol Res. 2015;114(4):1291-1300.
Menezes CB, Frasson AP, Tasca T. Trichomoniasis-are we giving the deserved attention to the most common non-viral sexually transmitted disease worldwide? Microbial Cell (Graz, Austria). 2016;3(9):404-419.
Schwebke JR, Burgess D. Trichomoniasis. Clin Microbiol Rev. 2004;17(4):794-803. table of contents.
Van Gerwen OT, Camino AF, Sharma J, Kissinger PJ, Muzny CA. Epidemiology, natural history, diagnosis, and treatment of trichomonas vaginalis in men. Clin Infect Dis. 2021;73(6):1119-1124.
Mielczarek E, Blaszkowska J. Trichomonas vaginalis: pathogenicity and potential role in human reproductive failure. Infection. 2016;44(4):447-458.
Figueroa-Angulo EE, Rendon-Gandarilla FJ, Puente-Rivera J, et al. The effects of environmental factors on the virulence of trichomonas vaginalis. Microbes Infect. 2012;14(15):1411-1427.
Malla N, Goyal K, Dhanda RS, Yadav M. Immunity in urogenital protozoa. Parasite Immunol. 2014;36(9):400-408.
Menezes CB, Tasca T. Trichomoniasis immunity and the involvement of the purinergic signaling. Biom J. 2016;39(4):234-243.
Nemati M, Malla N, Yadav M, Khorramdelazad H, Jafarzadeh A. Humoral and T cell-mediated immune response against trichomoniasis. Parasite Immunol. 2018;40(3):e12510.
Han IH, Goo SY, Park SJ, et al. Proinflammatory cytokine and nitric oxide production by human macrophages stimulated with trichomonas vaginalis. Korean J Parasitol. 2009;47(3):205-212.
Yang JB, Quan JH, Kim YE, et al. Involvement of PI3K/AKT and MAPK pathways for TNF-alpha production in SiHa cervical mucosal epithelial cells infected with trichomonas vaginalis. Korean J Parasitol. 2015;53(4):371-377.
Han IH, Park SJ, Ahn MH, Ryu JS. Involvement of mast cells in inflammation induced by trichomonas vaginalis via crosstalk with vaginal epithelial cells. Parasite Immunol. 2012;34(1):8-14.
Ryu JS, Kang JH, Jung SY, et al. Production of interleukin-8 by human neutrophils stimulated with trichomonas vaginalis. Infect Immun. 2004;72(3):1326-1332.
Singh BN, Hayes GR, Lucas JJ, et al. Structural details and composition of trichomonas vaginalis lipophosphoglycan in relevance to the epithelial immune function. Glycoconj J. 2009;26(1):3-17.
Yang S, Zhao W, Wang H, Wang Y, Li J, Wu X. Trichomonas vaginalis infection-associated risk of cervical cancer: a meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2018;228:166-173.
Han IH, Kim JH, Jang KS, Ryu JS. Inflammatory mediators of prostate epithelial cells stimulated with trichomonas vaginalis promote proliferative and invasive properties of prostate cancer cells. Prostate. 2019;79(10):1133-1146.
Kim JH, Han IH, Kim SS, et al. Interaction between trichomonas vaginalis and the prostate epithelium. Korean J Parasitol. 2017;55(2):213-218.
Im SJ, Han IH, Kim JH, et al. Inflammatory response of a prostate stromal cell line induced by trichomonas vaginalis. Parasite Immunol. 2016;38(4):218-227.
Im SJ, Ahn MH, Han IH, et al. Histamine and TNF-alpha release by rat peritoneal mast cells stimulated with trichomonas vaginalis. Parasite (Paris, France). 2011;18(1):49-55.
Han IH, Kim JH, Kim SS, Ahn MH, Ryu JS. Signalling pathways associated with IL-6 production and epithelial-mesenchymal transition induction in prostate epithelial cells stimulated with trichomonas vaginalis. Parasite Immunol. 2016;38(11):678-687.
Chang JH, Ryang YS, Morio T, Lee SK, Chang EJ. Trichomonas vaginalis inhibits proinflammatory cytokine production in macrophages by suppressing NF-kappaB activation. Mol Cells. 2004;18(2):177-185.
Olmos-Ortiz LM, Barajas-Mendiola MA, Barrios-Rodiles M, et al. Trichomonas vaginalis exosome-like vesicles modify the cytokine profile and reduce inflammation in parasite-infected mice. Parasite Immunol. 2017;39(6):e12426.
Huppert JS, Huang B, Chen C, Dawood HY, Fichorova RN. Clinical evidence for the role of trichomonas vaginalis in regulation of secretory leukocyte protease inhibitor in the female genital tract. J Infect Dis. 2013;207(9):1462-1470.
Draper D, Donohoe W, Mortimer L, Heine RP. Cysteine proteases of Trichomonas vaginalis degrade secretory leukocyte protease inhibitor. J Infect Dis. 1998;178(3):815-819.
Ozdemir S, Sengez B, Arslanoglu A. Human immunodeficiency virus type-1 Tat protein induces secretory leukocyte protease inhibitor expression in African green monkey but not human cells. Virus Genes. 2020;56:182-193.
Jafarzadeh A, Nemati M, Khorramdelazad H, Mirshafiey A. The toll-like receptor 2 (TLR2)-related Immunopathological responses in the multiple sclerosis and experimental autoimmune encephalomyelitis. Iran J Allergy Asthma Immunol. 2019;18(3):230-250.
Zeromski J, Kaczmarek M, Boruczkowski M, Kierepa A, Kowala-Piaskowska A, Mozer-Lisewska I. Significance and role of pattern recognition receptors in malignancy. Arch Immunol Ther Exp (Warsz). 2019;67(3):133-141.
Ghosh M, Shen Z, Fahey JV, et al. Pathogen recognition in the human female reproductive tract: expression of intracellular cytosolic sensors NOD1, NOD2, RIG-1, and MDA5 and response to HIV-1 and Neisseria gonorrhea. Am J Reprod Immunol (NY, NY: 1989). 2013;69(1):41-51.
Hirbod T, Kaldensjo T, Lopalco L, et al. Abundant and superficial expression of C-type lectin receptors in ectocervix of women at risk of HIV infection. J Acquir Immune Defic Syndr (1999). 2009;51(3):239-247.
Foo SS, Reading PC, Jaillon S, Mantovani A, Mahalingam S. Pentraxins and Collectins: friend or foe during pathogen invasion? Trends Microbiol. 2015;23(12):799-811.
De Nardo D. Toll-like receptors: activation, signalling and transcriptional modulation. Cytokine. 2015;74(2):181-189.
Nemati M, Larussa T, Khorramdelazad H, Mahmoodi M, Jafarzadeh A. Toll-like receptor 2: an important immunomodulatory molecule during helicobacter pylori infection. Life Sci. 2017;178:17-29.
Cui J, Chen Y, Wang HY, Wang RF. Mechanisms and pathways of innate immune activation and regulation in health and cancer. Hum Vaccin Immunother. 2014;10(11):3270-3285.
Chang JH, Park JY, Kim SK. Dependence on p38 MAPK signalling in the up-regulation of TLR2, TLR4 and TLR9 gene expression in trichomonas vaginalis-treated HeLa cells. Immunology. 2006;118(2):164-170.
Jafarzadeh A, Nemati M, Sharifi I, et al. Leishmania species-dependent functional duality of toll-like receptor 2. IUBMB Life. 2019;71(11):1685-1700.
Nasu K, Narahara H. Pattern recognition via the toll-like receptor system in the human female genital tract. Mediators Inflamm. 2010;2010:976024.
Li L, Li X, Gong P, et al. Trichomonas vaginalis induces production of Proinflammatory cytokines in mouse macrophages through activation of MAPK and NF-kappaB pathways partially mediated by TLR2. Front Microbiol. 2018;9:712.
Makinde HM, Zariffard R, Mirmonsef P, et al. IL-22 levels are associated with trichomonas vaginalis infection in the lower genital tract. Am J Reprod Immunol (NY, NY: 1989). 2013;70(1):38-44.
Gowda DC. TLR-mediated cell signaling by malaria GPIs. Trends Parasitol. 2007;23(12):596-604.
Miyake K, Shibata T, Ohto U, et al. Mechanisms controlling nucleic acid-sensing toll-like receptors. Int Immunol. 2018;30(2):43-51.
Manny AR, Hetzel CA, Mizani A, Nibert ML. Discovery of a novel species of Trichomonasvirus in the human parasite trichomonas vaginalis using transcriptome mining. Viruses. 2022;14(3):548.
Weber B, Mapeka TM, Maahlo MA, Hoosen AA. Double stranded RNA virus in south African trichomonas vaginalis isolates. J Clin Pathol. 2003;56(7):542-543.
Fraga J, Rojas L, Sariego I, Fernández-Calienes A. Double-stranded RNA viral infection in Cuban trichomonas vaginalis isolates. Braz J Infect Dis. 2005;9(6):521-524.
Snipes LJ, Gamard PM, Narcisi EM, Beard CB, Lehmann T, Secor WE. Molecular epidemiology of metronidazole resistance in a population of trichomonas vaginalis clinical isolates. J Clin Microbiol. 2000;38(8):3004-3009.
Fichorova RN, Lee Y, Yamamoto HS, et al. Endobiont viruses sensed by the human host-beyond conventional antiparasitic therapy. PLoS One. 2012;7(11):e48418.
Jafarzadeh A, Nemati M, Jafarzadeh S. The important role played by chemokines influence the clinical outcome of helicobacter pylori infection. Life Sci. 2019;231:116688.
Coleman CM, Wu L. HIV interactions with monocytes and dendritic cells: viral latency and reservoirs. Retrovirology. 2009;6(1):51.
Sonnex C. Toll-like receptors and genital tract infection. Int J STD AIDS. 2010;21(3):153-157.
Zariffard MR, Harwani S, Novak RM, Graham PJ, Ji X, Spear GT. Trichomonas vaginalis infection activates cells through toll-like receptor 4. Clin Immunol (Orlando, Fla). 2004;111(1):103-107.
Chauhan A, Pandey N, Desai A, et al. Association of TLR4 and TLR9 gene polymorphisms and haplotypes with cervicitis susceptibility. PLoS One. 2019;14(7):e0220330.
Fazeli A, Bruce C, Anumba DO. Characterization of toll-like receptors in the female reproductive tract in humans. Hum Reprod. 2005;20(5):1372-1378.
Dubois H, Wullaert A, Lamkanfi M. General strategies in Inflammasome biology. Curr Top Microbiol Immunol. 2016;397:1-22.
Ding S, Xu S, Ma Y, Liu G, Jang H, Fang J. Modulatory mechanisms of the NLRP3 Inflammasomes in diabetes. Biomolecules. 2019;9(12):850.
Xu JB, Zhang YL, Huang J, et al. Increased intracellular Cl(−) concentration mediates trichomonas vaginalis-induced inflammation in the human vaginal epithelium. Int J Parasitol. 2019;49(9):697-704.
Riestra AM, Valderrama JA, Patras KA, et al. Trichomonas vaginalis induces NLRP3 Inflammasome activation and Pyroptotic cell death in human macrophages. J Innate Immun. 2019;11(1):86-98.
Xu Z, Chen Z-m, Wu X, Zhang L, Cao Y, Zhou P. Distinct molecular mechanisms underlying potassium efflux for NLRP3 Inflammasome activation. Front Immunol. 2020;11:609441.
De Jesus JB, Ferreira MA, Cuervo P, Britto C, de Silva-Filho FC, Meyer-Fernandes JR. Iron modulates ecto-phosphohydrolase activities in pathogenic trichomonads. Parasitol Int. 2006;55(4):285-290.
Skeldon A, Saleh M. The inflammasomes: molecular effectors of host resistance against bacterial, viral, parasitic, and fungal infections. Front Microbiol. 2011;2:15.
Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16(7):407-420.
Kucknoor A, Mundodi V, Alderete JF. Trichomonas vaginalis adherence mediates differential gene expression in human vaginal epithelial cells. Cell Microbiol. 2005;7(6):887-897.
Nakahira K, Haspel JA, Rathinam VA, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol. 2011;12(3):222-230.
Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221-225.
Platnich JM, Muruve DA. NOD-like receptors and inflammasomes: a review of their canonical and non-canonical signaling pathways. Arch Biochem Biophys. 2019;670:4-14.
Yadav S, Verma V, Dhanda RS, Khurana S, Yadav M. Latent upregulation of Nlrp3, Nlrc4 and Aim2 differentiates between asymptomatic and symptomatic trichomonas vaginalis infection. Immunol Invest. 2021;1-22:1127-1148.
Kuriakose T, Kanneganti TD. Pyroptosis in antiviral immunity. Curr Top Microbiol Immunol. 2019. doi:10.1007/82_2019_189
Cauci S, Culhane JF. Modulation of vaginal immune response among pregnant women with bacterial vaginosis by trichomonas vaginalis, chlamydia trachomatis, Neisseria gonorrhoeae, and yeast. Am J Obstet Gynecol. 2007;196(2):133.e131-133.e137.
Fiori PL, Diaz N, Cocco AR, Rappelli P, Dessi D. Association of Trichomonas vaginalis with its symbiont mycoplasma hominis synergistically upregulates the in vitro proinflammatory response of human monocytes. Sex Transm Infect. 2013;89(6):449-454.
Kaneko N, Kurata M, Yamamoto T, Morikawa S, Masumoto J. The role of interleukin-1 in general pathology. Inflamm Regener. 2019;39:12.
Lupfer C, Anand PK. Integrating Inflammasome signaling in sexually transmitted infections. Trends Immunol. 2016;37(10):703-714.
Verma V, Dhanda RS, Moller NF, Yadav M. Inflammasomes and their role in innate immunity of sexually transmitted infections. Front Immunol. 2016;7:540.
Allsworth JE, Ratner JA, Peipert JF. Trichomoniasis and other sexually transmitted infections: results from the 2001-2004 National Health and nutrition examination surveys. Sex Transm Dis. 2009;36(12):738-744.
Van Der Pol B, Kwok C, Pierre-Louis B, et al. Trichomonas vaginalis infection and human immunodeficiency virus Acquisition in African Women. J Infect Dis. 2008;197(4):548-554.
Salawu OT, Esume CN. Frequency of human immunodeficiency virus (HIV) in trichomonas vaginalis infected women in Badagry, Lagos, Nigeria. J Reprod Infert. 2016;17(1):61-63.
Nakanishi K. Unique action of Interleukin-18 on T cells and other immune cells. Front Immunol. 2018;9:763.
Li H, Jiang T, Li MQ, Zheng XL, Zhao GJ. Transcriptional regulation of macrophages polarization by MicroRNAs. Front Immunol. 2018;9:1175.
Chudnovskiy A, Mortha A, Kana V, et al. Host-protozoan interactions protect from mucosal infections through activation of the Inflammasome. Cell. 2016;167(2):444-456.e414.
Masson L, Salkinder AL, Olivier AJ, et al. Relationship between female genital tract infections, mucosal interleukin-17 production and local T helper type 17 cells. Immunology. 2015;146(4):557-567.
Lasiglie D, Traggiai E, Federici S, et al. Role of IL-1 beta in the development of human T(H)17 cells: lesson from NLPR3 mutated patients. PLoS One. 2011;6(5):e20014.
Song HO, Shin MH, Ahn MH, Min DY, Kim YS, Ryu JS. Trichomonas vaginalis: reactive oxygen species mediates caspase-3 dependent apoptosis of human neutrophils. Exp Parasitol. 2008;118(1):59-65.
Escario A, Gomez Barrio A, Simons Diez B, Escario JA. Immunohistochemical study of the vaginal inflammatory response in experimental trichomoniasis. Acta Trop. 2010;114(1):22-30.
Mercer F, Ng SH, Brown TM, Boatman G, Johnson PJ. Neutrophils kill the parasite Trichomonas vaginalis using trogocytosis. PLoS Biol. 2018;16(2):e2003885.
Nam YH, Min A, Kim SH, et al. Leukotriene B(4) receptors BLT1 and BLT2 are involved in interleukin-8 production in human neutrophils induced by Trichomonas vaginalis-derived secretory products. Inflamm Res. 2012;61(2):97-102.
Groom HC, Warren AY, Neal DE, Bishop KN. No evidence for infection of UK prostate cancer patients with XMRV, BK virus, Trichomonas vaginalis or human papilloma viruses. PLoS One. 2012;7(3):e34221.
Sutcliffe S, Alderete JF, Till C, et al. Trichomonosis and subsequent risk of prostate cancer in the prostate cancer prevention trial. Int J Cancer. 2009;124(9):2082-2087.
Shui IM, Kolb S, Hanson C, Sutcliffe S, Rider JR, Stanford JL. Trichomonas vaginalis infection and risk of advanced prostate cancer. Prostate. 2016;76(7):620-623.
Marous M, Huang WY, Rabkin CS, et al. Trichomonas vaginalis infection and risk of prostate cancer: associations by disease aggressiveness and race/ethnicity in the PLCO trial. Cancer Causes Control. 2017;28(8):889-898.
Fowke JH, Han X, Alderete JF, Moses KA, Signorello LB, Blot WJ. A prospective study of Trichomonas vaginalis and prostate cancer risk among African American men. BMC Res Notes. 2016;9:224.
Yang HY, Su RY, Chung CH, et al. Association between trichomoniasis and prostate and bladder diseases: a population-based case-control study. Sci Rep. 2022;12(1):15358.
Kim JH, Moon HS, Kim KS, Hwang HS, Ryu JS, Park SY. Comparison of Seropositivity to Trichomonas vaginalis between men with prostatic tumor and Normal men. Korean J Parasitol. 2019;57(1):21-25.
Saleh NE, Alhusseiny SM, El-Zayady WM, et al. Trichomonas vaginalis serostatus and prostate cancer risk in Egypt: a case-control study. Parasitol Res. 2021;120(4):1379-1388.
Gardner WA Jr, Culberson DE, Bennett BD. Trichomonas vaginalis in the prostate gland. Arch Pathol Lab Med. 1986;110(5):430-432.
Jang KS, Han IH, Lee SJ, et al. Experimental rat prostatitis caused by Trichomonas vaginalis infection. Prostate. 2019;79(4):379-389.
Iqbal J, Al-Rashed J, Kehinde EO. Detection of Trichomonas vaginalis in prostate tissue and serostatus in patients with asymptomatic benign prostatic hyperplasia. BMC Infect Dis. 2016;16(1):506.
Chen YC, Huang YL, Platz EA, et al. Prospective study of effect modification by toll-like receptor 4 variation on the association between Trichomonas vaginalis serostatus and prostate cancer. Cancer Causes Control. 2013;24(1):175-180.
Culig Z. Proinflammatory cytokine interleukin-6 in prostate carcinogenesis. Am J Clin Exp Urol. 2014;2(3):231-238.
Culig Z, Puhr M. Interleukin-6 and prostate cancer: current developments and unsolved questions. Mol Cell Endocrinol. 2018;462(Pt A):25-30.
Ou Z, He Y, Qi L, et al. Infiltrating mast cells enhance benign prostatic hyperplasia through IL-6/STAT3/cyclin D1 signals. Oncotarget. 2017;8(35):59156-59164.
Sutcliffe S, Neace C, Magnuson NS, Reeves R, Alderete JF. Trichomonosis, a common curable STI, and prostate carcinogenesis-a proposed molecular mechanism. PLoS Pathog. 2012;8(8):e1002801.
Seo MY, Im SJ, Gu NY, et al. Inflammatory response of prostate epithelial cells to stimulation by Trichomonas vaginalis. Prostate. 2014;74(4):441-449.
Kim SS, Kim JH, Han IH, Ahn MH, Ryu JS. Inflammatory responses in a benign prostatic hyperplasia epithelial cell line (BPH-1) infected with Trichomonas vaginalis. Korean J Parasitol. 2016;54(2):123-132.
Izumi K, Mizokami A, Lin HP, et al. Serum chemokine (CC motif) ligand 2 level as a diagnostic, predictive, and prognostic biomarker for prostate cancer. Oncotarget. 2016;7(7):8389-8398.
Zhang J, Lu Y, Pienta KJ. Multiple roles of chemokine (C-C motif) ligand 2 in promoting prostate cancer growth. J Natl Cancer Inst. 2010;102(8):522-528.
Liu Q, Li A, Tian Y, et al. The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev. 2016;31:61-71.
Korppi M, Terasjarvi J, Lauhkonen E, Huhtala H, Nuolivirta K, He Q. Toll-like receptor 4 polymorphisms were associated with low serum pro-inflammatory cytokines in BCG osteitis survivors. Acta Paediatr (Oslo, Norway: 1992). 2019;109:1417-1422.
Loganathan R, Nazeer M, Goda V, et al. Genetic variants of TLR4 and TLR9 are risk factors for chronic helicobacter pylori infection in south Indian Tamils. Hum Immunol. 2017;78(2):216-220.
Karan D. Inflammasomes: emerging central players in cancer immunology and immunotherapy. Front Immunol. 2018;9:3028.
Huang CF, Chen L, Li YC, et al. NLRP3 inflammasome activation promotes inflammation-induced carcinogenesis in head and neck squamous cell carcinoma. J Exp Clin Cancer Res. 2017;36(1):116.
Wang H, Luo Q, Feng X, Zhang R, Li J, Chen F. NLRP3 promotes tumor growth and metastasis in human oral squamous cell carcinoma. BMC Cancer. 2018;18(1):500.
Zaki MH, Vogel P, Body-Malapel M, Lamkanfi M, Kanneganti TD. IL-18 production downstream of the Nlrp3 inflammasome confers protection against colorectal tumor formation. J Immunol (Baltimore, Md: 1950). 2010;185(8):4912-4920.
Gouravani M, Khalili N, Razi S, Keshavarz-Fathi M, Khalili N, Rezaei N. The NLRP3 inflammasome: a therapeutic target for inflammation-associated cancers. Expert Rev Clin Immunol. 2020;16:1-13.

Auteurs

Abdollah Jafarzadeh (A)

Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran.
Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.

Maryam Nemati (M)

Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
Department of Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran.

Ehsan Salarkia (E)

Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran.

Sonal Yadav (S)

Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India.

Najmeh Aminizadeh (N)

Department of Histology, School of Medicine, Islamic Azad University Branch of Kerman, Kerman, Iran.

Sara Jafarzadeh (S)

Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.

Manisha Yadav (M)

Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH