Nuclear envelope-remodeling events as models to assess the potential role of membranes on genome stability.
genome stability
lipid homeostasis
nuclear envelope remodeling
nucleolus
rDNA
Journal
FEBS letters
ISSN: 1873-3468
Titre abrégé: FEBS Lett
Pays: England
ID NLM: 0155157
Informations de publication
Date de publication:
08 2023
08 2023
Historique:
revised:
31
05
2023
received:
20
02
2023
accepted:
31
05
2023
medline:
9
8
2023
pubmed:
21
6
2023
entrez:
20
6
2023
Statut:
ppublish
Résumé
The nuclear envelope (NE) encloses the genetic material and functions in chromatin organization and stability. In Saccharomyces cerevisiae, the NE is bound to the ribosomal DNA (rDNA), highly repeated and transcribed, thus prone to genetic instability. While tethering limits instability, it simultaneously triggers notable NE remodeling. We posit here that NE remodeling may contribute to genome integrity maintenance. The NE importance in genome expression, structure, and integrity is well recognized, yet studies mostly focus on peripheral proteins and nuclear pores, not on the membrane itself. We recently characterized a NE invagination drastically obliterating the rDNA, which we propose here as a model to probe if and how membranes play an active role in genome stability preservation.
Identifiants
pubmed: 37339935
doi: 10.1002/1873-3468.14688
doi:
Substances chimiques
DNA, Ribosomal
0
Types de publication
Journal Article
Review
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1946-1956Informations de copyright
© 2023 Federation of European Biochemical Societies.
Références
Molenaar I, Smitt WWS, Rozijn TH and Tonino GJM (1970) Biochemical and electron microscopic study of isolated yeast nuclei. Exp Cell Res 60, 148-156.
Petes TD (1979) Yeast ribosomal DNA genes are located on chromosome XII. Proc Natl Acad Sci USA 76, 410-414.
Iida T and Kobayashi T (2019) RNA polymerase I activators count and adjust ribosomal RNA gene copy number. Mol Cell 73, 645-654.e13.
Pérez-Ortín JE, Mena A, Barba-Aliaga M, Singh A, Chávez S and García-Martínez J (2021) Cell volume homeostatically controls the rDNA repeat copy number and rRNA synthesis rate in yeast. Hopper AK, editor. PLoS Genet 17, e1009520.
Xu B, Li H, Perry JM, Singh VP, Unruh J, Yu Z, Zakari M, McDowell W, Li L and Gerton JL (2017) Ribosomal DNA copy number loss and sequence variation in cancer. Eng C, editor. PLoS Genet 13, e1006771.
Warner JR (1989) Synthesis of ribosomes in Saccharomyces cerevisiae. Microbiol Rev 53, 256-271.
Meier UT (2022) The daunting task of modifying ribosomal RNA. RNA 28, 1555-1557.
Latonen L (2019) Phase-to-phase with nucleoli - stress responses, protein aggregation and novel roles of RNA. Front Cell Neurosci 13, 1-10.
Mekhail K, Seebacher J, Gygi SP and Moazed D (2008) Role for perinuclear chromosome tethering in maintenance of genome stability. Nature 456, 667-670.
Iglesias N, Paulo JA, Tatarakis A, Wang X, Edwards AL, Bhanu NV, Garcia BA, Haas W, Gygi SP and Moazed D (2020) Native chromatin proteomics reveals a role for specific nucleoporins in heterochromatin organization and maintenance. Mol Cell 77, 51-66.e8.
Ide S, Miyazaki T, Maki H and Kobayashi T (2010) Abundance of ribosomal RNA gene copies maintains genome integrity. Science 327, 693-696.
Lopez FB, Fort A, Tadini L, Probst AV, McHale M, Friel J, Ryder P, Pontvianne F, Pesaresi P, Sulpice R et al. (2021) Gene dosage compensation of rRNA transcript levels in Arabidopsis thaliana lines with reduced ribosomal gene copy number. Plant Cell 33, 1135-1150.
Brewer BJ and Fangman WL (1988) A replication fork barrier at the 3′ end of yeast ribosomal RNA genes. Cell 55, 637-643.
Kobayashi T (2003) The replication fork barrier site forms a unique structure with Fob1p and inhibits the replication fork. Mol Cell Biol 23, 9178-9188.
Huang J and Moazed D (2003) Association of the RENT complex with nontranscribed and coding regions of rDNA and a regional requirement for the replication fork block protein Fob1 in rDNA silencing. Genes Dev 17, 2162-2176.
Salim D and Gerton JL (2019) Ribosomal DNA instability and genome adaptability. Chromosom Res 27, 73-87.
Nelson JO, Watase GJ, Warsinger-Pepe N and Yamashita YM (2019) Mechanisms of rDNA copy number maintenance. Trends Genet 35, 734-742.
Kobayashi T, Heck DJ, Nomura M and Horiuchi T (1998) Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I. Genes Dev 12, 3821-3830.
Houseley J and Tollervey D (2011) Repeat expansion in the budding yeast ribosomal DNA can occur independently of the canonical homologous recombination machinery. Nucleic Acids Res 39, 8778-8791.
Saka K, Takahashi A, Sasaki M and Kobayashi T (2016) More than 10% of yeast genes are related to genome stability and influence cellular senescence via rDNA maintenance. Nucleic Acids Res 44, 4211-4221.
Kobayashi T (2014) Ribosomal RNA gene repeats, their stability and cellular senescence. Proc Japan Acad Ser B 90, 119-129.
Chan JNY, Poon BPK, Salvi J, Olsen JB, Emili A and Mekhail K (2011) Perinuclear Cohibin complexes maintain replicative life span via roles at distinct silent chromatin domains. Dev Cell 20, 867-879.
Torres-Rosell J, Sunjevaric I, De Piccoli G, Sacher M, Eckert-Boulet N, Reid R, Jentsch S, Rothstein R, Aragón L and Lisby M (2007) The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nat Cell Biol 9, 923-931.
Capella M, Mandemaker IK, Martín Caballero L, den Brave F, Pfander B, Ladurner AG, Jentsch S and Braun S (2021) Nucleolar release of rDNA repeats for repair involves SUMO-mediated untethering by the Cdc48/p97 segregase. Nat Commun 12, 4918.
Marnef A, Finoux AL, Arnould C, Guillou E, Daburon V, Rocher V, Mangeat T, Mangeot PE, Ricci EP and Legube G (2019) A cohesin/HUSH- and LINC-dependent pathway controls ribosomal DNA double-strand break repair. Genes Dev 33, 1175-1190.
Dey G and Baum B (2021) Nuclear envelope remodelling during mitosis. Curr Opin Cell Biol 70, 67-74.
Lomakin AJ, Cattin CJ, Cuvelier D, Alraies Z, Molina M, Nader GPF, Srivastava N, Sáez PJ, Garcia-Arcos JM, Zhitnyak IY et al. (2020) The nucleus acts as a ruler tailoring cell responses to spatial constraints. Science 370, eaba2894.
Venturini V, Pezzano F, Català Castro F, Häkkinen H-M, Jiménez-Delgado S, Colomer-Rosell M, Marro M, Tolosa-Ramon Q, Paz-López S, Valverde MA et al. (2020) The nucleus measures shape changes for cellular proprioception to control dynamic cell behavior. Science 370, eaba2644.
Denholtz M, Zhu Y, He Z, Lu H, Isoda T, Döhrmann S, Nizet V and Murre C (2020) Upon microbial challenge, human neutrophils undergo rapid changes in nuclear architecture and chromatin folding to orchestrate an immediate inflammatory gene program. Genes Dev 34, 149-165.
Kidiyoor GR, Li Q, Bastianello G, Bruhn C, Giovannetti I, Mohamood A, Beznoussenko GV, Mironov A, Raab M, Piel M et al. (2020) ATR is essential for preservation of cell mechanics and nuclear integrity during interstitial migration. Nat Commun 11, 4828.
Ovejero S, Soulet C and Moriel-Carretero M (2021) The alkylating agent methyl methanesulfonate triggers lipid alterations at the inner nuclear membrane that are independent from its DNA-damaging ability. Int J Mol Sci 22, 7461.
Stone EM, Heun P, Laroche T, Pillus L and Gasser SM (2000) MAP kinase signaling induces nuclear reorganization in budding yeast. Curr Biol 10, 373-382.
Witkin KL, Chong Y, Shao S, Webster MT, Lahiri S, Walters AD, Lee B, Koh JLY, Prinz WA, Andrews BJ et al. (2012) The budding yeast nuclear envelope adjacent to the nucleolus serves as a membrane sink during mitotic delay. Curr Biol 22, R489-R491.
Webster MT, McCaffery JM and Cohen-Fix O (2010) Vesicle trafficking maintains nuclear shape in Saccharomyces cerevisiae during membrane proliferation. J Cell Biol 191, 1079-1088.
Campbell JL, Lorenz A, Witkin KL, Hays T, Loidl J and Cohen-Fix O (2006) Yeast nuclear envelope subdomains with distinct abilities to resist membrane expansion. Mol Biol Cell 17, 1768-1778.
Pan X, Roberts P, Chen Y, Kvam E, Shulga N, Huang K, Lemmon S and Goldfarb DS (2000) Nucleus-vacuole junctions in Saccharomyces cerevisiae are formed through the direct interaction of Vac8p with Nvj1p. Mol Biol Cell 11, 2445-2457.
Kvam E and Goldfarb DS (2006) Nucleus-vacuole junctions in yeast: anatomy of a membrane contact site. Biochem Soc Trans 34, 340-342.
Rogers SM, Hariri H, Wood NEM, Speer NO and Henne WM (2021) Glucose restriction drives spatial reorganization of mevalonate metabolism. Elife 10, 1-23.
Hariri H, Rogers S, Ugrankar R, Liu YL, Feathers JR and Henne WM (2018) Lipid droplet biogenesis is spatially coordinated at ER - vacuole contacts under nutritional stress. EMBO Rep 19, 57-72.
Lord CL and Wente SR (2020) Nuclear envelope-vacuole contacts mitigate nuclear pore complex assembly stress. J Cell Biol 219, e202001165.
Kvam E and Goldfarb DS (2007) Nucleus-vacuole junctions and piecemeal microautophagy of the nucleus in S. cerevisiae. Autophagy 3, 85-92.
Golam Mostofa M, Rahman MA, Koike N, Yeasmin AMST, Islam N, Waliullah TM, Hosoyamada S, Shimobayashi M, Kobayashi T, Hall MN et al. (2018) CLIP and cohibin separate rDNA from nucleolar proteins destined for degradation by nucleophagy. J Cell Biol 217, 2675-2690.
Torán-Vilarrubias A and Moriel-Carretero M (2021) Oxidative agents elicit endoplasmic reticulum morphological changes suggestive of alterations in lipid metabolism. MicroPubl Biol 2021, doi: 10.17912/micropub.biology.000462
Matos-Perdomo E, Santana-Sosa S, Ayra-Plasencia J, Medina-Suárez S and Machín F (2022) The vacuole shapes the nucleus and the ribosomal DNA loop during mitotic delays. Life Sci Alliance 5, e202101161.
Male G, Deolal P, Manda NK, Yagnik S, Mazumder A and Mishra K (2021) Nucleolar size regulates nuclear envelope shape in Saccharomyces cerevisiae. J Cell Sci 133, jcs242172.
Walters AD, Amoateng K, Wang R, Chen JH, McDermott G, Larabell CA, Gadal O and Cohen-Fix O (2019) Nuclear envelope expansion in budding yeast is independent of cell growth and does not determine nuclear volume. Mol Biol Cell 30, 131-145.
Hattier T, Andrulis ED and Tartakoff AM (2007) Immobility, inheritance and plasticity of shape of the yeast nucleus. BMC Cell Biol 8, 47.
Garcia M, Kumanski S, Elías-Villalobos A, Cazevieille C, Soulet C and Moriel-Carretero M (2022) Nuclear ingression of cytoplasmic bodies accompanies a boost in autophagy. Life Sci Alliance 5, e202101160.
Barbosa AD, Sembongi H, Su W-M, Abreu S, Reggiori F, Carman GM and Siniossoglou S (2015) Lipid partitioning at the nuclear envelope controls membrane biogenesis. Parton RG, editor. Mol Biol Cell 26, 3641-3657.
Bahmanyar S and Schlieker C (2020) Lipid and protein dynamics that shape nuclear envelope identity. Mol Biol Cell 31, 1315-1323.
Inokoshi J, Tomoda H, Hashimoto H, Watanabe A, Takeshima H and Ōmura S (1994) Cerulenin-resistant mutants of Saccharomyces cerevisiae with an altered fatty acid synthase gene. Mol Gen Genet 244, 90-96.
Kwiatek JM, Han GS and Carman GM (2020) Phosphatidate-mediated regulation of lipid synthesis at the nuclear/endoplasmic reticulum membrane. Biochim Biophys Acta Mol Cell Biol Lipids 1865, 158434.
Ben M'barek K, Ajjaji D, Chorlay A, Vanni S, Forêt L and Thiam AR (2017) ER membrane phospholipids and surface tension control cellular lipid droplet formation. Dev Cell 41, 591-604.e7.
Choudhary V, Golani G, Joshi AS, Cottier S, Schneiter R, Prinz WA and Kozlov MM (2018) Architecture of lipid droplets in endoplasmic reticulum is determined by phospholipid intrinsic curvature. Curr Biol 28, 915-926.e9.
Barbosa AD, Lim K, Mari M, Edgar JR, Gal L, Sterk P, Jenkins BJ, Koulman A, Savage DB, Schuldiner M et al. (2019) Compartmentalized synthesis of triacylglycerol at the inner nuclear membrane regulates nuclear organization. Dev Cell 50, 755-766.e6.
Mekhail K and Moazed D (2010) The nuclear envelope in genome organization, expression and stability. Nat Rev Mol Cell Biol 11, 317-328.
Towbin BD, Meister P and Gasser SM (2009) The nuclear envelope - a scaffold for silencing? Curr Opin Genet Dev 19, 180-186.
Oza P, Jaspersen SL, Miele A, Dekker J and Peterson CL (2009) Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery. Genes Dev 23, 912-927.
Hwang S, Williams JF, Kneissig M, Lioudyno M, Rivera I, Helguera P, Busciglio J, Storchova Z, King MC and Torres EM (2019) Suppressing aneuploidy-associated phenotypes improves the fitness of trisomy 21 cells. Cell Rep 29, 2473-2488.e5.
Ferrandiz N, Downie L, Starling GP and Royle SJ (2021) Endomembranes promote chromosome missegregation by ensheathing misaligned chromosomes. J Cell Biol 221, e202203021. doi: 10.1083/jcb.202203021
Azzi-Martin L, He W, Péré-Védrenne C, Korolik V, Alix C, Prochazkova-Carlotti M, Morel JL, le Roux-Goglin E, Lehours P, Djavaheri-Mergny M et al. (2019) Cytolethal distending toxin induces the formation of transient messenger-rich ribonucleoprotein nuclear invaginations in surviving cells. PLoS Pathog 15, 1-27.
Vietri M, Schultz SW, Bellanger A, Jones CM, Petersen LI, Raiborg C, Skarpen E, Pedurupillay CRJ, Kjos I, Kip E et al. (2020) Unrestrained ESCRT-III drives micronuclear catastrophe and chromosome fragmentation. Nat Cell Biol 22, 856-867.
Gu M, LaJoie D, Chen OS, von Appen A, Ladinsky MS, Redd MJ, Nikolova L, Bjorkman PJ, Sundquist WI, Ullman KS et al. (2017) LEM2 recruits CHMP7 for ESCRT-mediated nuclear envelope closure in fission yeast and human cells. Proc Natl Acad Sci USA 114, E2166-E2175.
Thaller DJ, Allegretti M, Borah S, Ronchi P, Beck M and Lusk CP (2019) An ESCRT-LEM protein surveillance system is poised to directly monitor the nuclear envelope and nuclear transport system. Elife 8, e45284.
Thaller DJ, Tong D, Marklew CJ, Ader NR, Mannino PJ, Borah S, King MC, Ciani B and Lusk CP (2021) Direct binding of ESCRT protein Chm7 to phosphatidic acid-rich membranes at nuclear envelope herniations. J Cell Biol 220, e202004222.
Ovejero S, Soulet C, Kumanski S and Moriel-Carretero M (2022) Coordination between phospholipid pools and DNA damage sensing. Biol Cell 114, 1-9.
Mauger J-P (2012) Role of the nuclear envelope in calcium signalling. Biol Cell 104, 70-83.
Marius P, Guerra MT, Nathanson MH, Ehrlich BE and Leite MF (2006) Calcium release from ryanodine receptors in the nucleoplasmic reticulum. Cell Calcium 39, 65-73.
Humbert J-P, Matter N, Artault J-C, Köppler P and Malviya AN (1996) Inositol 1,4,5-trisphosphate receptor is located to the inner nuclear membrane vindicating regulation of nuclear calcium signaling by inositol 1,4,5-trisphosphate. J Biol Chem 271, 478-485.
Koppler P, Matter N and Malviya AN (1993) Evidence for stereospecific inositol 1,3,4,5-[3H]tetrakisphosphate binding sites on rat liver nuclei. Delineating inositol 1,3,4,5-tetrakisphosphate interaction in nuclear calcium signaling process. J Biol Chem 268, 26248-26252.
Delint-Ramirez I, Konada L, Heady L, Rueda R, Jacome ASV, Marlin E, Marchioni C, Segev A, Kritskiy O, Yamakawa S et al. (2022) Calcineurin dephosphorylates topoisomerase IIβ and regulates the formation of neuronal-activity-induced DNA breaks. Mol Cell 82, 3794-3809.e8.
Wittmann M, Queisser G, Eder A, Wiegert JS, Bengtson CP, Hellwig A, Wittum G and Bading H (2009) Synaptic activity induces dramatic changes in the geometry of the cell nucleus: interplay between nuclear structure, histone H3 phosphorylation, and nuclear calcium signaling. J Neurosci 29, 14687-14700.
Lee S-H, Hadipour-Lakmehsari S, Miyake T and Gramolini AO (2018) Three-dimensional imaging reveals endo(sarco)plasmic reticulum-containing invaginations within the nucleoplasm of muscle. Am J Physiol Physiol 314, C257-C267.
Cantwell H and Nurse P (2019) Unravelling nuclear size control. Curr Genet 65, 1281-1285.
Edens LJ, White KH, Jevtic P, Li X and Levy DL (2013) Nuclear size regulation: from single cells to development and disease. Trends Cell Biol 23, 151-159.
Kume K, Cantwell H, Neumann FR, Jones AW, Snijders AP and Nurse P (2017) A systematic genomic screen implicates nucleocytoplasmic transport and membrane growth in nuclear size control. Hopper AK, editor. PLoS Genet 13, e1006767.
Tsang CK, Li H and Zheng XS (2007) Nutrient starvation promotes condensin loading to maintain rDNA stability. EMBO J 26, 448-458.
Bozler J, Nguyen HQ, Rogers GC and Bosco G (2015) Condensins exert force on chromatin-nuclear envelope tethers to mediate nucleoplasmic reticulum formation in Drosophila melanogaster. G3 (Bethesda) 5, 341-352.
Correll CC, Bartek J and Dundr M (2019) The nucleolus: a multiphase condensate balancing ribosome synthesis and translational capacity in health, aging and ribosomopathies. Cells 8, 869.
Lindström MS, Jurada D, Bursac S, Orsolic I, Bartek J and Volarevic S (2018) Nucleolus as an emerging hub in maintenance of genome stability and cancer pathogenesis. Oncogene 37, 2351-2366.
Derenzini M, Montanaro L and Treré D (2009) What the nucleolus says to a tumour pathologist. Histopathology 54, 753-762.
Hansen E and Holaska JM (2023) The nuclear envelope and metastasis. Oncotarget 14, 317-320.
Georgopoulos K (2017) In search of the mechanism that shapes the neutrophil's nucleus. Genes Dev 31, 85-87.
Mettenleiter TC (2016) Breaching the barrier-the nuclear envelope in virus infection. J Mol Biol 428, 1949-1961.
Champion L, Pawar S, Luithle N, Ungricht R and Kutay U (2019) Dissociation of membrane-chromatin contacts is required for proper chromosome segregation in mitosis. Misteli T, editor. Mol Biol Cell 30, 427-440.
Kalousi A and Soutoglou E (2016) Nuclear compartmentalization of DNA repair. Curr Opin Genet Dev 37, 148-157.
Torres-Rosell J, Machín F, Jarmuz A and Aragón L (2004) Nucleolar segregation lags behind the rest of the genome and requires Cdc14p activation by the FEAR network. Cell Cycle 3, 494-500.