Review article laser-induced hyperthermia on graphene oxide composites.
Graphene oxide
Hyperthermia
Near-infrared radiation
Photothermal therapy
Reduced graphene oxide
Thermal dose
Journal
Journal of nanobiotechnology
ISSN: 1477-3155
Titre abrégé: J Nanobiotechnology
Pays: England
ID NLM: 101152208
Informations de publication
Date de publication:
20 Jun 2023
20 Jun 2023
Historique:
received:
27
03
2023
accepted:
07
06
2023
medline:
22
6
2023
pubmed:
21
6
2023
entrez:
20
6
2023
Statut:
epublish
Résumé
Hyperthermia-based therapies have shown great potential for clinical applications such as for the antitumor and antipathogenic activities. Within all strategies, the so-called photothermal therapy proposes to induce the hyperthermia by the remote laser radiation on a photothermal conversion agent, in contact with the target tissue. This paper reviews the most relevant in vitro and in vivo studies focused on NIR laser-induced hyperthermia due to photoexcitation of graphene oxide (GO) and reduced graphene oxide (rGO). Relevant parameters such as the amount of GO/rGO, the influence of the laser wavelength and power density are considered. Moreover, the required temperature and exposure time for each antitumor/antipathogenic case are collected and unified in a thermal dose parameter: the CEM43. The calculated CEM43 thermal doses revealed a great variability for the same type of tumor/strain. In order to detect potential tendencies, the values were classified into four ranges, varying from CEM43 < 60 min to CEM43 ≥ 1 year. Thus, a preference for moderate thermal doses of CEM43 < 1 year was detected in antitumor activity, with temperatures ≤ 50 °C and exposure time ≤ 15 min. In case of the antipathogenic studies, the most used thermal dose was higher, CEM43 ≥ 1 year, with ablative hyperthermia (> 60ºC). The ability of GO/rGO as effective photothermal conversion agents to promote a controlled hyperthermia is proven. The variability found for the CEM43 thermal doses on the reviewed studies reveals the potentiality to evaluate, for each application, the use of lower temperatures, by modulating time and/or repetitions in the doses.
Sections du résumé
BACKGROUND
BACKGROUND
Hyperthermia-based therapies have shown great potential for clinical applications such as for the antitumor and antipathogenic activities. Within all strategies, the so-called photothermal therapy proposes to induce the hyperthermia by the remote laser radiation on a photothermal conversion agent, in contact with the target tissue.
METHODS
METHODS
This paper reviews the most relevant in vitro and in vivo studies focused on NIR laser-induced hyperthermia due to photoexcitation of graphene oxide (GO) and reduced graphene oxide (rGO). Relevant parameters such as the amount of GO/rGO, the influence of the laser wavelength and power density are considered. Moreover, the required temperature and exposure time for each antitumor/antipathogenic case are collected and unified in a thermal dose parameter: the CEM43.
RESULTS
RESULTS
The calculated CEM43 thermal doses revealed a great variability for the same type of tumor/strain. In order to detect potential tendencies, the values were classified into four ranges, varying from CEM43 < 60 min to CEM43 ≥ 1 year. Thus, a preference for moderate thermal doses of CEM43 < 1 year was detected in antitumor activity, with temperatures ≤ 50 °C and exposure time ≤ 15 min. In case of the antipathogenic studies, the most used thermal dose was higher, CEM43 ≥ 1 year, with ablative hyperthermia (> 60ºC).
CONCLUSIONS
CONCLUSIONS
The ability of GO/rGO as effective photothermal conversion agents to promote a controlled hyperthermia is proven. The variability found for the CEM43 thermal doses on the reviewed studies reveals the potentiality to evaluate, for each application, the use of lower temperatures, by modulating time and/or repetitions in the doses.
Identifiants
pubmed: 37340410
doi: 10.1186/s12951-023-01956-6
pii: 10.1186/s12951-023-01956-6
pmc: PMC10280920
doi:
Substances chimiques
graphene oxide
0
Graphite
7782-42-5
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
196Informations de copyright
© 2023. The Author(s).
Références
RSC Adv. 2018 Nov 8;8(66):37623-37630
pubmed: 35558627
Colloids Surf B Biointerfaces. 2015 Mar 1;127:281-91
pubmed: 25687099
ACS Nano. 2014 Jan 28;8(1):260-8
pubmed: 24383990
ACS Appl Mater Interfaces. 2019 Jan 16;11(2):1876-1885
pubmed: 30582788
Polymers (Basel). 2020 Aug 17;12(8):
pubmed: 32824495
Int J Nanomedicine. 2020 Oct 29;15:8451-8463
pubmed: 33149586
IEEE Pulse. 2011 Sep-Oct;2(5):28-38
pubmed: 25372967
J Photochem Photobiol B. 2018 Oct;187:89-95
pubmed: 30103077
ACS Nano. 2011 Sep 27;5(9):6971-80
pubmed: 21851105
J Photochem Photobiol B. 2018 Mar;180:68-71
pubmed: 29413703
Langmuir. 2015 Feb 17;31(6):2036-42
pubmed: 25602470
J Photochem Photobiol B. 2020 Mar;204:111587
pubmed: 32062387
J Biomed Mater Res A. 2019 Oct;107(10):2296-2309
pubmed: 31152618
PLoS Med. 2011 Oct;8(10):e1001104
pubmed: 22022233
J Photochem Photobiol B. 2019 Mar;192:34-39
pubmed: 30682652
Int J Hyperthermia. 2003 May-Jun;19(3):267-94
pubmed: 12745972
Nanotheranostics. 2017 May 30;1(2):208-216
pubmed: 29071189
Mater Sci Eng C Mater Biol Appl. 2016 Apr 1;61:953-64
pubmed: 26838925
ACS Appl Mater Interfaces. 2015 Jun 3;7(21):11246-56
pubmed: 25978657
Angew Chem Int Ed Engl. 2016 Jan 4;55(1):405-7
pubmed: 26549205
Microb Cell. 2020 Jun 01;7(6):143-145
pubmed: 32548176
Int J Hyperthermia. 2018 Mar;34(2):144-156
pubmed: 29498314
J Am Chem Soc. 2011 May 4;133(17):6825-31
pubmed: 21476500
Small. 2016 Aug;12(31):4165-84
pubmed: 27389848
ACS Appl Bio Mater. 2019 Feb 18;2(2):747-756
pubmed: 35016279
Colloids Surf B Biointerfaces. 2021 Mar;199:111510
pubmed: 33341438
Nanomicro Lett. 2020 Jan 24;12(1):38
pubmed: 34138257
Photodiagnosis Photodyn Ther. 2018 Mar;21:91-97
pubmed: 29155336
Int J Hyperthermia. 2022;39(1):697-705
pubmed: 35469518
Mater Sci Eng C Mater Biol Appl. 2020 Feb;107:110201
pubmed: 31761243
Nanomedicine. 2019 Jan;15(1):142-152
pubmed: 30300749
Crit Rev Oncol Hematol. 2016 Jan;97:56-64
pubmed: 26315383
J Mater Chem B. 2019 Mar 28;7(12):2001-2008
pubmed: 32254804
Nanotechnology. 2018 Nov 23;29(47):475604
pubmed: 30191889
J Nanobiotechnology. 2022 Jul 14;20(1):325
pubmed: 35836225
Curr Med Chem. 2017;24(3):268-291
pubmed: 27774874
Int J Mol Sci. 2020 May 18;21(10):
pubmed: 32443558
IEEE Trans Biomed Eng. 1984 Jan;31(1):9-16
pubmed: 6724614
Appl Environ Microbiol. 1985 Aug;50(2):298-303
pubmed: 3901917
Int J Hyperthermia. 2003 May-Jun;19(3):252-66
pubmed: 12745971
Int J Biol Macromol. 2020 Jul 15;155:961-971
pubmed: 31712157
Nature. 1974 Oct 11;251(5475):521-2
pubmed: 4214001
Nanotechnology. 2014 Jan 24;25(3):035101
pubmed: 24346084
Bull Environ Contam Toxicol. 2015 Jul;95(1):25-30
pubmed: 25792106
Colloids Surf B Biointerfaces. 2018 May 23;169:429-437
pubmed: 29843117
Biomaterials. 2011 Nov;32(33):8555-61
pubmed: 21839507
J Photochem Photobiol B. 2019 May;194:188-193
pubmed: 31004866
Polymers (Basel). 2020 May 13;12(5):
pubmed: 32414197
Int J Hyperthermia. 2016;32(1):50-62
pubmed: 26758036
Nano Converg. 2020 Mar 17;7(1):10
pubmed: 32180051
Cancer Res. 1977 Oct;37(10):3780-4
pubmed: 561655
J Photochem Photobiol B. 2018 Sep;186:189-196
pubmed: 30075424
Radiology. 1980 Dec;137(3):795-803
pubmed: 7444064
J Mater Chem B. 2013 May 21;1(19):2496-2501
pubmed: 32261050
Dalton Trans. 2018 Mar 12;47(11):3931-3939
pubmed: 29459928
Cancer Res. 1979 Feb;39(2 Pt 1):396-401
pubmed: 761211
Nano Lett. 2010 Sep 8;10(9):3318-23
pubmed: 20684528
Technol Cancer Res Treat. 2018 Jan 1;17:1533034618768637
pubmed: 29665743
Cells. 2020 Mar 23;9(3):
pubmed: 32209981
Mater Sci Eng C Mater Biol Appl. 2017 Jul 1;76:1274-1288
pubmed: 28482495
Handb Clin Neurol. 2018;157:853-868
pubmed: 30459045
Molecules. 2022 Aug 30;27(17):
pubmed: 36080351
J Colloid Interface Sci. 2019 Sep 15;552:218-229
pubmed: 31128402