Cartilage-like protein hydrogels engineered via entanglement.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
Jun 2023
Jun 2023
Historique:
received:
10
07
2020
accepted:
31
03
2023
medline:
23
6
2023
pubmed:
22
6
2023
entrez:
21
6
2023
Statut:
ppublish
Résumé
Load-bearing tissues, such as muscle and cartilage, exhibit high elasticity, high toughness and fast recovery, but have different stiffness (with cartilage being significantly stiffer than muscle)
Identifiants
pubmed: 37344650
doi: 10.1038/s41586-023-06037-0
pii: 10.1038/s41586-023-06037-0
doi:
Substances chimiques
Biocompatible Materials
0
Collagen
9007-34-5
Connectin
0
Hydrogels
0
Proteoglycans
0
TTN protein, human
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
740-747Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Wainwright, S. A., Biggs, W. D., Currey, J. D. & Gosline, J. M. Mechanical Design in Organisms (Princeton Univ. Press, 1982).
Higuchi, H. Viscoelasticity and function of connectin/titin filaments in skinned muscle fibers. Adv. Biophys. 33, 159–171 (1996).
pubmed: 8922111
Linke, W. A., Popov, V. I. & Pollack, G. H. Passive and active tension in single cardiac myofibrils. Biophys. J. 67, 782–792 (1994).
pubmed: 7948691
pmcid: 1225421
Hayes, W. C. & Mockros, L. F. Viscoelastic properties of human articular cartilage. J. Appl. Physiol. 31, 562–568 (1971).
Temple, D. K., Cederlund, A. A., Lawless, B. M., Aspden, R. M. & Espino, D. M. Viscoelastic properties of human and bovine articular cartilage: a comparison of frequency-dependent trends. BMC Musculoskelet. Disord. 17, 419 (2016).
pubmed: 27716169
pmcid: 5054593
Williamson, A. K., Chen, A. C., Masuda, K., Thonar, E. J. & Sah, R. L. Tensile mechanical properties of bovine articular cartilage: variations with growth and relationships to collagen network components. J. Orthop. Res. 21, 872–880 (2003).
pubmed: 12919876
Kerin, A. J., Wisnom, M. R. & Adams, M. A. The compressive strength of articular cartilage. Proc. Inst. Mech. Eng. H 212, 273–280 (1998).
pubmed: 9769695
Almarza, A. J. & Athanasiou, K. A. Design characteristics for the tissue engineering of cartilaginous tissues. Ann. Biomed. Eng. 32, 2–17 (2004).
pubmed: 14964717
Lv, S. et al. Designed biomaterials to mimic the mechanical properties of muscles. Nature 465, 69–73 (2010).
pubmed: 20445626
Wu, J. et al. Rationally designed synthetic protein hydrogels with predictable mechanical properties. Nat. Commun. 9, 620 (2018).
pubmed: 29434258
pmcid: 5809592
Khoury, L. R., Shmilovich, N. J. & Popa, K. I. Study of biomechanical properties of protein-based hydrogels using force-clamp rheometry. Macromolecules 51, 1441–1452 (2018).
Jiang, Y. & Tuan, R. S. Origin and function of cartilage stem/progenitor cells in osteoarthritis. Nat. Rev. Rheumatol. 11, 206–212 (2015).
pubmed: 25536487
Treloar, L. R. G. The Physics of Rubber Elasticity (Oxford Univ. Press, 1975).
Gosline, J. et al. Elastic proteins: biological roles and mechanical properties. Phil. Trans. R. Soc. Lond. B 357, 121–132 (2002).
Li, Y., Xue, B. & Cao, Y. Synthetic protein hydrogels. ACS Macro Lett. 9, 512–524 (2020).
pubmed: 35648497
Elvin, C. M. et al. Synthesis and properties of crosslinked recombinant pro-resilin. Nature 437, 999–1002 (2005).
pubmed: 16222249
McGann, C. L., Levenson, E. A. & Kiick, K. L. Resilin-based hybrid hydrogels for cardiovascular tissue engineering. Macromolecules 214, 203–213 (2013).
pubmed: 23956463
Fang, J. et al. Forced protein unfolding leads to highly elastic and tough protein hydrogels. Nat. Commun. 4, 2974 (2013).
pubmed: 24352111
McCutchen, C. W. Lubrication of Joints,The Joints and Synovial Fluid Vol. 1, 437–483 (Academic, 1978).
Lu, X. L. & Mow, V. C. Biomechanics of articular cartilage and determination of material properties. Med. Sci. Sports Exerc. 40, 193–199 (2008).
pubmed: 18202585
Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M. & Gaub, H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).
pubmed: 9148804
Li, H. et al. Reverse engineering of the giant muscle protein titin. Nature 418, 998–1002 (2002).
pubmed: 12198551
Koga, N. et al. Principles for designing ideal protein structures. Nature 491, 222–227 (2012).
pubmed: 23135467
pmcid: 3705962
Colby, R. H. Structure and linear viscoelasticity of flexible polymer solutions: comparison of polyelectrolyte and neutral polymer solutions. Rhol. Acta 49, 425–442 (2010).
Fancy, D. A. & Kodadek, T. Chemistry for the analysis of protein–protein interactions: rapid and efficient cross-linking triggered by long wavelength light. Proc. Natl Acad. Sci. USA 96, 6020–6024 (1999).
Partlow, B. P., Applegate, M. B., Omenetto, F. G. & Kaplan, D. L. Dityrosine cross-linking in designing biomaterials. ACS Biomater. Sci. Eng. 2, 2108−2121 (2016).
Fang, J. & Li, H. A facile way to tune mechanical properties of artificial elastomeric proteins-based hydrogels. Langmuir 28, 8260–8265 (2012).
pubmed: 22554148
Johnson, C. P., Tang, H. Y., Carag, C., Speicher, D. W. & Discher, D. E. Forced unfolding of proteins within cells. Science 317, 663–666 (2007).
pubmed: 17673662
pmcid: 2741095
Partlow, B. P. et al. Highly tunable elastomeric silk biomaterials. Adv. Funct. Mater. 24, 4615–4624 (2014).
pubmed: 25395921
pmcid: 4225629
Lei, H. et al. Stretchable hydrogels with low hysteresis and anti-fatigue fracture based on polyprotein cross-linkers. Nat. Commun. 11, 4032 (2020).
pubmed: 32788575
pmcid: 7423981
Minajeva, A., Kulke, M., Fernandez, J. M. & Linke, W. A. Unfolding of titin domains explains the viscoelastic behavior of skeletal myofibrils. Biophys. J. 80, 1442–1451 (2001).
pubmed: 11222304
pmcid: 1301335
Gong, J. P., Katsuyama, Y., Kurokawa, T. & Osada, Y. Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003).
Gong, J. P. Why are double network hydrogels so tough? Soft Matter 6, 2583–2590 (2010).
Xu, L., Zhao, X., Xu, C. & Kotov, N. A. Water-rich biomimetic composites with abiotic self-organizing nanofiber network. Adv. Mater. 30, 1703343 (2018).
Xu, L. et al. Conjoined-network rendered stiff and tough hydrogels from biogenic molecules. Sci. Adv. 5, eaau3442 (2019).
pubmed: 30746486
pmcid: 6358320
Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).
Discher, D. E., Janmey, P. & Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).
pubmed: 16293750
Huey, D. J., Hu, J. C. & Athanasiou, K. A. Unlike bone, cartilage regeneration remains elusive. Science 338, 917–921 (2012).
pubmed: 23161992
pmcid: 4327988
Hunziker, E. B. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage 10, 432–463 (2002).
pubmed: 12056848
Hayami, T. et al. The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum. 50, 1193–1206 (2004).
pubmed: 15077302
Leahy, D. J., Hendrickson, W. A., Aukhil, I. & Erickson, H. P. Structure of a fibronectin type III domain from tenascin phased by MAD analysis of the selenomethionyl protein. Science 258, 987–991 (1992).
pubmed: 1279805
Yokota, M. et al. Spontaneous hyaline cartilage regeneration can be induced in an osteochondral defect created in the femoral condyle using a novel doublenetwork hydrogel. BMC Musculoskelet. Disord. 12, 49 (2011).
pubmed: 21338528
pmcid: 3050780
Li, L. et al. Biofabrication of a biomimetic supramolecular-polymer double network hydrogel for cartilage regeneration. Mater. Des. 189, 108492 (2020).
Okumura, K. I. K. The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv. Mater. 13, 485–487 (2001).
Bin Imran, A. et al. Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network. Nat. Commun. 5, 5124 (2014).
Liu, J. et al. Tough supramolecular polymer networks with extreme stretchability and fast room-temperature self-healing. Adv. Mater. 29, 1605325 (2017).
Wang, J., Lin, L., Cheng, Q. & Jiang, L. A strong bio-inspired layered PNIPAM-clay nanocomposite hydrogel. Angew. Chem. Int. Edn 51, 4676–4680 (2012).
Sun, W. et al. Molecular engineering of metal coordination interactions for strong, tough, and fast-recovery hydrogels. Sci. Adv. 6, eaaz9531 (2020).
pubmed: 32494623
pmcid: 7164941
Sun, J. Y. et al. Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012).
pubmed: 22955625
pmcid: 3642868
Zhao, X. Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10, 672–687 (2014).
pubmed: 24834901
pmcid: 4040255
Lillie, M. A., Chalmers, G. W. & Gosline, J. M. The effects of heating on the mechanical properties of arterial elastin. Connect. Tissue Res. 31, 23–35 (1994).
pubmed: 15609619
Bello, A. B., Kim, D., Kim, D., Park, H. & Lee, S. H. Engineering and functionalization of gelatin biomaterials: from cell culture to medical applications. Tissue Eng. Part B 26, 164–180 (2020).
Gao, J. et al. Cell-free bilayered porous scaffolds for osteochondral regeneration fabricated by continuous 3D-printing using nascent physical hydrogel as ink. Adv. Healthc. Mater. 10, e2001404 (2021).
pubmed: 33225617
Tsai, C. C. et al. Enzyme-cross-linked gelatin hydrogel enriched with an articular cartilage extracellular matrix and human adipose-derived stem cells for hyaline cartilage regeneration of rabbits. ACS Biomater. Sci. Eng. 6, 5110–5119 (2020).
pubmed: 33455262
van den Borne, M. P. et al. International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in autologous chondrocyte implantation (ACI) and microfracture. Osteoarthritis Cartilage 15, 1397–1402 (2007).
pubmed: 17604187
O’Driscoll, S. W., Keeley, F. W. & Salter, R. B. Durability of regenerated articular cartilage produced by free autogenous periosteal grafts in major full-thickness defects in joint surfaces under the influence of continuous passive motion. A follow-up report at one year. J. Bone Joint Surg. Am. 70, 595–606 (1988).
pubmed: 3356727
Stanish, W. D. et al. Novel scaffold-based BST-CarGel treatment results in superior cartilage repair compared with microfracture in a randomized controlled trial. J. Bone Joint Surg. Am. 95, 1640–1650 (2013).
pubmed: 24048551
Cao, Y., Kuske, R. & Li, H. Direct observation of markovian behavior of the mechanical unfolding of individual proteins. Biophys. J. 95, 782–788 (2008).
pubmed: 18375518
pmcid: 2440450
Cao, Y. & Li, H. Polyprotein of GB1 is an ideal artificial elastomeric protein. Nat. Mater. 6, 109–114 (2007).
pubmed: 17237787
Khoury, L. R. & Popa, I. Chemical unfolding of protein domains induces shape change in programmed protein hydrogels. Nat. Commun. 10, 5439 (2019).
pubmed: 31784506
pmcid: 6884551
Alexander, P. A., He, Y., Chen, Y., Orban, J. & Bryan, P. N. A minimal sequence code for switching protein structure and function. Proc. Natl Acad. Sci. USA 106, 21149–21154 (2009).
pubmed: 19923431
pmcid: 2779201
Leahy, D. J., Aukhil, I. & Erickson, H. P. 2.0 A crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region. Cell 84, 155–164 (1996).
pubmed: 8548820