Transcriptomic profiling of Parkinson's disease brains reveals disease stage specific gene expression changes.


Journal

Acta neuropathologica
ISSN: 1432-0533
Titre abrégé: Acta Neuropathol
Pays: Germany
ID NLM: 0412041

Informations de publication

Date de publication:
08 2023
Historique:
received: 21 11 2022
accepted: 06 06 2023
revised: 02 05 2023
medline: 10 7 2023
pubmed: 22 6 2023
entrez: 22 6 2023
Statut: ppublish

Résumé

Parkinson´s disease (PD) is a progressive neurodegenerative disorder characterized by both motor and non-motor symptoms. Aggravation of symptoms is mirrored by accumulation of protein aggregates mainly composed by alpha-synuclein in different brain regions, called Lewy bodies (LB). Previous studies have identified several molecular mechanisms as autophagy and inflammation playing a role in PD pathogenesis. Increased insights into mechanisms involved in early disease stages and driving the progression of the LB pathology are required for the development of disease-modifying strategies. Here, we aimed to elucidate disease stage-specific transcriptomic changes in brain tissue of well-characterized PD and control donors. We collected frontal cortex samples from 84 donors and sequenced both the coding and non-coding RNAs. We categorized our samples into groups based on their degree of LB pathology aiming to recapitulate a central aspect of disease progression. Using an analytical pipeline that corrected for sex, age at death, RNA quality, cell composition and unknown sources of variation, we found major disease stage-specific transcriptomic changes. Gene expression changes were most pronounced in donors at the disease stage when microscopic LB changes first occur in the sampled brain region. Additionally, we identified disease stage-specific enrichment of brain specific pathways and immune mechanisms. On the contrary, we showed that mitochondrial mechanisms are enriched throughout the disease course. Our data-driven approach also suggests a role for several poorly characterized lncRNAs in disease development and progression of PD. Finally, by combining genetic and epigenetic information, we highlighted two genes (MAP4K4 and PHYHIP) as candidate genes for future functional studies. Together our results indicate that transcriptomic dysregulation and associated functional changes are highly disease stage-specific, which has major implications for the study of neurodegenerative disorders.

Identifiants

pubmed: 37347276
doi: 10.1007/s00401-023-02597-7
pii: 10.1007/s00401-023-02597-7
pmc: PMC10329075
doi:

Substances chimiques

alpha-Synuclein 0
MAP4K4 protein, human EC 2.7.1.11
Protein Serine-Threonine Kinases EC 2.7.11.1
Intracellular Signaling Peptides and Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

227-244

Informations de copyright

© 2023. The Author(s).

Références

Adiconis X, Borges-Rivera D, Satija R, DeLuca DS, Busby MA, Berlin AM et al (2013) Comparative analysis of RNA sequencing methods for degraded or low-input samples. Nat Methods 10:623–629. https://doi.org/10.1038/nmeth.2483
doi: 10.1038/nmeth.2483 pubmed: 23685885 pmcid: 3821180
Alafuzoff I, Ince PG, Arzberger T, Al-Sarraj S, Bell J, Bodi I et al (2009) Staging/typing of Lewy body related alpha-synuclein pathology: a study of the BrainNet Europe Consortium. Acta Neuropathol 117:635–652. https://doi.org/10.1007/s00401-009-0523-2
doi: 10.1007/s00401-009-0523-2 pubmed: 19330340
Anders S, Huber W (2010) Differential expression analysis for sequence count data. Nature Precedings: 1–1
Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics, Babraham Institute, Cambridge, United Kingdom, City
Anton Z, Betin VMS, Simonetti B, Traer CJ, Attar N, Cullen PJ, Lane JD (2020) A heterodimeric SNX4--SNX7 SNX-BAR autophagy complex coordinates ATG9A trafficking for efficient autophagosome assembly. J Cell Sci 133: Doi https://doi.org/10.1242/jcs.246306
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al (2000) Gene ontology: tool for the unification of biology. Gene Ontol Consortium Nat Genet 25:25–29. https://doi.org/10.1038/75556
doi: 10.1038/75556
Attems J, Toledo JB, Walker L, Gelpi E, Gentleman S, Halliday G et al (2021) Neuropathological consensus criteria for the evaluation of Lewy pathology in post-mortem brains: a multi-centre study. Acta Neuropathol 141:159–172. https://doi.org/10.1007/s00401-020-02255-2
doi: 10.1007/s00401-020-02255-2 pubmed: 33399945 pmcid: 7847437
Bauer M (2007) RNA in forensic science. Forensic Sci Int Genet 1:69–74. https://doi.org/10.1016/j.fsigen.2006.11.002
doi: 10.1016/j.fsigen.2006.11.002 pubmed: 19083730
Bescond M, Rahmani Z (2005) Dual-specificity tyrosine-phosphorylated and regulated kinase 1A (DYRK1A) interacts with the phytanoyl-CoA alpha-hydroxylase associated protein 1 (PAHX-AP1), a brain specific protein. Int J Biochem Cell Biol 37:775–783. https://doi.org/10.1016/j.biocel.2004.12.006
doi: 10.1016/j.biocel.2004.12.006 pubmed: 15694837
Blauwendraat C, Faghri F, Pihlstrom L, Geiger J, Elbaz A, Lesage S, Corvol J-C, May P, Nicolas A, Abramzon Yet al (2017) NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. Neurobiol Aging: Doi https://doi.org/10.1016/j.neurobiolaging.2017.05.009
Bonito-Oliva A, Barbash S, Sakmar TP, Graham WV (2017) Nucleobindin 1 binds to multiple types of pre-fibrillar amyloid and inhibits fibrillization. Sci Rep 7:42880. https://doi.org/10.1038/srep42880
doi: 10.1038/srep42880 pubmed: 28220836 pmcid: 5318909
Borrageiro G, Haylett W, Seedat S, Kuivaniemi H, Bardien S (2018) A review of genome-wide transcriptomics studies in Parkinson’s disease. Eur J Neurosci 47:1–16. https://doi.org/10.1111/ejn.13760
doi: 10.1111/ejn.13760 pubmed: 29068110
Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211. https://doi.org/10.1016/s0197-4580(02)00065-9
doi: 10.1016/s0197-4580(02)00065-9 pubmed: 12498954
Braak H, Rub U, Jansen Steur EN, Del Tredici K, de Vos RA (2005) Cognitive status correlates with neuropathologic stage in Parkinson disease. Neurology 64:1404–1410. https://doi.org/10.1212/01.WNL.0000158422.41380.82
doi: 10.1212/01.WNL.0000158422.41380.82 pubmed: 15851731
Brakedal B, Dolle C, Riemer F, Ma Y, Nido GS, Skeie GO, Craven AR, Schwarzlmuller T, Brekke N, Diab Jet al (2022) The NADPARK study: A randomized phase I trial of nicotinamide riboside supplementation in Parkinson's disease. Cell Metab 34: 396–407 e396 https://doi.org/10.1016/j.cmet.2022.02.001
Buter TC, van den Hout A, Matthews FE, Larsen JP, Brayne C, Aarsland D (2008) Dementia and survival in Parkinson disease: a 12-year population study. Neurology 70:1017–1022. https://doi.org/10.1212/01.wnl.0000306632.43729.24
doi: 10.1212/01.wnl.0000306632.43729.24 pubmed: 18362281
Campbell JN, Macosko EZ, Fenselau H, Pers TH, Lyubetskaya A, Tenen D et al (2017) A molecular census of arcuate hypothalamus and median eminence cell types. Nat Neurosci 20:484–496. https://doi.org/10.1038/nn.4495
doi: 10.1038/nn.4495 pubmed: 28166221 pmcid: 5323293
Chang D, Nalls MA, Hallgrimsdottir IB, Hunkapiller J, van der Brug M, Cai F, International Parkinson's Disease Genomics C, andMe Research T, Kerchner GA, Ayalon Get al (2017) A meta-analysis of genome-wide association studies identifies 17 new Parkinson's disease risk loci. Nat Genet 49: 1511–1516 https://doi.org/10.1038/ng.3955
Chelban V, Wilson MP, Warman Chardon J, Vandrovcova J, Zanetti MN, Zamba-Papanicolaou E et al (2019) PDXK mutations cause polyneuropathy responsive to pyridoxal 5’-phosphate supplementation. Ann Neurol 86:225–240. https://doi.org/10.1002/ana.25524
doi: 10.1002/ana.25524 pubmed: 31187503 pmcid: 6772106
Chen R, Wu X, Jiang L, Zhang Y (2017) Single-cell RNA-Seq reveals hypothalamic cell diversity. Cell Rep 18:3227–3241. https://doi.org/10.1016/j.celrep.2017.03.004
doi: 10.1016/j.celrep.2017.03.004 pubmed: 28355573 pmcid: 5782816
Corradini BR, Iamashita P, Tampellini E, Farfel JM, Grinberg LT, Moreira-Filho CA (2014) Complex network-driven view of genomic mechanisms underlying Parkinson's disease: analyses in dorsal motor vagal nucleus, locus coeruleus, and substantia nigra. Biomed Res Int 2014: 543673 Doi https://doi.org/10.1155/2014/543673
de Lau LM, Koudstaal PJ, Witteman JC, Hofman A, Breteler MM (2006) Dietary folate, vitamin B12, and vitamin B6 and the risk of Parkinson disease. Neurology 67:315–318. https://doi.org/10.1212/01.wnl.0000225050.57553.6d
doi: 10.1212/01.wnl.0000225050.57553.6d pubmed: 16864826
DelleDonne A, Klos KJ, Fujishiro H, Ahmed Z, Parisi JE, Josephs KA et al (2008) Incidental Lewy body disease and preclinical Parkinson disease. Arch Neurol 65:1074–1080. https://doi.org/10.1001/archneur.65.8.1074
doi: 10.1001/archneur.65.8.1074 pubmed: 18695057
Dickson DW, Braak H, Duda JE, Duyckaerts C, Gasser T, Halliday GM et al (2009) Neuropathological assessment of Parkinson’s disease: refining the diagnostic criteria. Lancet Neurol 8:1150–1157. https://doi.org/10.1016/S1474-4422(09)70238-8
doi: 10.1016/S1474-4422(09)70238-8 pubmed: 19909913
Dickson DW, Fujishiro H, DelleDonne A, Menke J, Ahmed Z, Klos KJ et al (2008) Evidence that incidental Lewy body disease is pre-symptomatic Parkinson’s disease. Acta Neuropathol 115:437–444. https://doi.org/10.1007/s00401-008-0345-7
doi: 10.1007/s00401-008-0345-7 pubmed: 18264713
Dijkstra AA, Ingrassia A, de Menezes RX, van Kesteren RE, Rozemuller AJ, Heutink P, van de Berg WD (2015) Evidence for Immune Response, Axonal Dysfunction and Reduced Endocytosis in the Substantia Nigra in Early Stage Parkinson's Disease. PLoS One 10: e0128651 https://doi.org/10.1371/journal.pone.0128651
Dijkstra AA, Voorn P, Berendse HW, Groenewegen HJ, Netherlands Brain B, Rozemuller AJ et al (2014) Stage-dependent nigral neuronal loss in incidental Lewy body and Parkinson’s disease. Mov Disord 29:1244–1251. https://doi.org/10.1002/mds.25952
doi: 10.1002/mds.25952 pubmed: 24996051
Dorsey ER, Sherer T, Okun MS, Bloem BR (2018) The emerging evidence of the Parkinson pandemic. J Parkinsons Dis 8:S3–S8. https://doi.org/10.3233/JPD-181474
doi: 10.3233/JPD-181474 pubmed: 30584159 pmcid: 6311367
Duke DC, Moran LB, Kalaitzakis ME, Deprez M, Dexter DT, Pearce RK et al (2006) Transcriptome analysis reveals link between proteasomal and mitochondrial pathways in Parkinson’s disease. Neurogenetics 7:139–148. https://doi.org/10.1007/s10048-006-0033-5
doi: 10.1007/s10048-006-0033-5 pubmed: 16699787
Dumitriu A, Golji J, Labadorf AT, Gao B, Beach TG, Myers RH et al (2016) Integrative analyses of proteomics and RNA transcriptomics implicate mitochondrial processes, protein folding pathways and GWAS loci in Parkinson disease. BMC Med Genomics 9:5. https://doi.org/10.1186/s12920-016-0164-y
doi: 10.1186/s12920-016-0164-y pubmed: 26793951 pmcid: 4722694
Egeblad M, Nakasone ES, Werb Z (2010) Tumors as organs: complex tissues that interface with the entire organism. Dev Cell 18:884–901. https://doi.org/10.1016/j.devcel.2010.05.012
doi: 10.1016/j.devcel.2010.05.012 pubmed: 20627072 pmcid: 2905377
Elstner M, Morris CM, Heim K, Lichtner P, Bender A, Mehta D et al (2009) Single-cell expression profiling of dopaminergic neurons combined with association analysis identifies pyridoxal kinase as Parkinson’s disease gene. Ann Neurol 66:792–798. https://doi.org/10.1002/ana.21780
doi: 10.1002/ana.21780 pubmed: 20035503 pmcid: 4034432
Emre M, Aarsland D, Brown R, Burn DJ, Duyckaerts C, Mizuno Y, Broe GA, Cummings J, Dickson DW, Gauthier Set al (2007) Clinical diagnostic criteria for dementia associated with Parkinson's disease. Mov Disord 22: 1689–1707; quiz 1837 https://doi.org/10.1002/mds.21507
Ewels P, Magnusson M, Lundin S, Käller M (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32:3047–3048
doi: 10.1093/bioinformatics/btw354 pubmed: 27312411 pmcid: 5039924
Feleke R, Reynolds RH, Smith AM, Tilley B, Taliun SAG, Hardy J et al (2021) Cross-platform transcriptional profiling identifies common and distinct molecular pathologies in Lewy body diseases. Acta Neuropathol 142:449–474. https://doi.org/10.1007/s00401-021-02343-x
doi: 10.1007/s00401-021-02343-x pubmed: 34309761 pmcid: 8357687
Gibb WR, Lees AJ (1988) The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 51:745–752. https://doi.org/10.1136/jnnp.51.6.745
doi: 10.1136/jnnp.51.6.745 pubmed: 2841426 pmcid: 1033142
Giguere N, Burke Nanni S, Trudeau LE (2018) On cell loss and selective vulnerability of neuronal populations in Parkinson’s disease. Front Neurol 9:455. https://doi.org/10.3389/fneur.2018.00455
doi: 10.3389/fneur.2018.00455 pubmed: 29971039 pmcid: 6018545
Grindberg RV, Yee-Greenbaum JL, McConnell MJ, Novotny M, O’Shaughnessy AL, Lambert GM et al (2013) RNA-sequencing from single nuclei. Proc Natl Acad Sci 110:19802–19807
doi: 10.1073/pnas.1319700110 pubmed: 24248345 pmcid: 3856806
Guella I, Asselta R, Tesei S, Zini M, Pezzoli G, Duga S (2010) The PDXK rs2010795 variant is not associated with Parkinson disease in Italy. Ann Neurol 67: 411–412; author reply 412 https://doi.org/10.1002/ana.21964
Hou X, Watzlawik JO, Fiesel FC, Springer W (2020) Autophagy in Parkinson’s Disease. J Mol Biol 432:2651–2672. https://doi.org/10.1016/j.jmb.2020.01.037
doi: 10.1016/j.jmb.2020.01.037 pubmed: 32061929 pmcid: 7211126
Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 8:1–13. https://doi.org/10.1016/j.jalz.2011.10.007
doi: 10.1016/j.jalz.2011.10.007 pubmed: 22265587 pmcid: 3266529
Jaffe AE, Tao R, Norris AL, Kealhofer M, Nellore A, Shin JH et al (2017) qSVA framework for RNA quality correction in differential expression analysis. Proc Natl Acad Sci USA 114:7130–7135. https://doi.org/10.1073/pnas.1617384114
doi: 10.1073/pnas.1617384114 pubmed: 28634288 pmcid: 5502589
Kaneko S, Chen X, Lu P, Yao X, Wright TG, Rajurkar M et al (2011) Smad inhibition by the Ste20 kinase Misshapen. Proc Natl Acad Sci USA 108:11127–11132. https://doi.org/10.1073/pnas.1104128108
doi: 10.1073/pnas.1104128108 pubmed: 21690388 pmcid: 3131379
Kempuraj D, Thangavel R, Natteru PA, Selvakumar GP, Saeed D, Zahoor H, Zaheer S, Iyer SS, Zaheer A (2016) Neuroinflammation Induces Neurodegeneration. J Neurol Neurosurg Spine 1:
Keo A, Mahfouz A, Ingrassia AMT, Meneboo JP, Villenet C, Mutez E et al (2020) Transcriptomic signatures of brain regional vulnerability to Parkinson’s disease. Commun Biol 3:101. https://doi.org/10.1038/s42003-020-0804-9
doi: 10.1038/s42003-020-0804-9 pubmed: 32139796 pmcid: 7058608
Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360. https://doi.org/10.1038/nmeth.3317
doi: 10.1038/nmeth.3317 pubmed: 25751142 pmcid: 4655817
Koch JC, Bitow F, Haack J, d'Hedouville Z, Zhang JN, Tonges L, Michel U, Oliveira LM, Jovin TM, Liman Jet al (2015) Alpha-Synuclein affects neurite morphology, autophagy, vesicle transport and axonal degeneration in CNS neurons. Cell Death Dis 6: e1811 https://doi.org/10.1038/cddis.2015.169
Kordower JH, Olanow CW, Dodiya HB, Chu Y, Beach TG, Adler CH et al (2013) Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease. Brain 136:2419–2431. https://doi.org/10.1093/brain/awt192
doi: 10.1093/brain/awt192 pubmed: 23884810 pmcid: 3722357
Kuhn A, Thu D, Waldvogel HJ, Faull RL, Luthi-Carter R (2011) Population-specific expression analysis (PSEA) reveals molecular changes in diseased brain. Nat Methods 8:945–947. https://doi.org/10.1038/nmeth.1710
doi: 10.1038/nmeth.1710 pubmed: 21983921
Lee HK, Braynen W, Keshav K, Pavlidis P (2005) ErmineJ: tool for functional analysis of gene expression data sets. BMC Bioinformatics 6:269. https://doi.org/10.1186/1471-2105-6-269
doi: 10.1186/1471-2105-6-269 pubmed: 16280084 pmcid: 1310606
Lee ZH, Kim H, Ahn KY, Seo KH, Kim JK, Bae CS et al (2000) Identification of a brain specific protein that associates with a refsum disease gene product, phytanoyl-CoA alpha-hydroxylase. Brain Res Mol Brain Res 75:237–247. https://doi.org/10.1016/s0169-328x(99)00304-6
doi: 10.1016/s0169-328x(99)00304-6 pubmed: 10686344
Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD (2012) The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28:882–883
doi: 10.1093/bioinformatics/bts034 pubmed: 22257669 pmcid: 3307112
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078-2079 Doi https://doi.org/10.1093/bioinformatics/btp352
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:1–21
doi: 10.1186/s13059-014-0550-8
Mancarci BO, Toker L, Tripathy SJ, Li B, Rocco B, Sibille E, Pavlidis P (2017) Cross-Laboratory Analysis of Brain Cell Type Transcriptomes with Applications to Interpretation of Bulk Tissue Data. eNeuro 4: https://doi.org/10.1523/ENEURO.0212-17.2017
Mancarci O (2022) ermineR: Gene set analysis with multifunctionality assessment. R package version 1019000, City
McCormick DB, Chen H (1999) Update on interconversions of vitamin B-6 with its coenzyme. J Nutr 129:325–327. https://doi.org/10.1093/jn/129.2.325
doi: 10.1093/jn/129.2.325 pubmed: 10024608
Menden K, Marouf M, Oller S, Dalmia A, Magruder DS, Kloiber K, Heutink P, Bonn S (2020) Deep learning-based cell composition analysis from tissue expression profiles. Sci Adv 6: eaba2619 https://doi.org/10.1126/sciadv.aba2619
Murakami K, Miyake Y, Sasaki S, Tanaka K, Fukushima W, Kiyohara C et al (2010) Dietary intake of folate, vitamin B6, vitamin B12 and riboflavin and risk of Parkinson’s disease: a case-control study in Japan. Br J Nutr 104:757–764. https://doi.org/10.1017/S0007114510001005
doi: 10.1017/S0007114510001005 pubmed: 20338075
Nalls MA, Blauwendraat C, Vallerga CL, Heilbron K, Bandres-Ciga S, Chang D et al (2019) Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol 18:1091–1102. https://doi.org/10.1016/S1474-4422(19)30320-5
doi: 10.1016/S1474-4422(19)30320-5 pubmed: 31701892 pmcid: 8422160
Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M et al (2014) Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet 46:989–993. https://doi.org/10.1038/ng.3043
doi: 10.1038/ng.3043 pubmed: 25064009 pmcid: 4146673
Nicoletti V, Palermo G, Del Prete E, Mancuso M, Ceravolo R (2021) Understanding the Multiple Role of Mitochondria in Parkinson's Disease and Related Disorders: Lesson From Genetics and Protein-Interaction Network. Front Cell Dev Biol 9: 636506 https://doi.org/10.3389/fcell.2021.636506
Nido GS, Dick F, Toker L, Petersen K, Alves G, Tysnes OB et al (2020) Common gene expression signatures in Parkinson’s disease are driven by changes in cell composition. Acta Neuropathol Commun 8:55. https://doi.org/10.1186/s40478-020-00932-7
doi: 10.1186/s40478-020-00932-7 pubmed: 32317022 pmcid: 7175586
Oliveira L, Falomir-Lockhart LJ, Botelho M, Lin K, Wales P, Koch J et al (2015) Elevated α-synuclein caused by SNCA gene triplication impairs neuronal differentiation and maturation in Parkinson’s patient-derived induced pluripotent stem cells. Cell Death Dis 6:e1994–e1994
doi: 10.1038/cddis.2015.318 pubmed: 26610207 pmcid: 4670926
Pakkenberg B, Møller A, Gundersen H, Dam AM, Pakkenberg H (1991) The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson’s disease estimated with an unbiased stereological method. J Neurol Neurosurg Psychiatry 54:30–33
doi: 10.1136/jnnp.54.1.30 pubmed: 2010756 pmcid: 1014294
Pantano L (2019) DEGreport: Report of DEG analysis. New Jersey, NJ: R package version 1:
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 14:417–419. https://doi.org/10.1038/nmeth.4197
doi: 10.1038/nmeth.4197 pubmed: 28263959 pmcid: 5600148
Pihlstrom L, Shireby G, Geut H, Henriksen SP, Rozemuller AJM, Tunold JA et al (2022) Epigenome-wide association study of human frontal cortex identifies differential methylation in Lewy body pathology. Nat Commun 13:4932. https://doi.org/10.1038/s41467-022-32619-z
doi: 10.1038/s41467-022-32619-z pubmed: 35995800 pmcid: 9395387
Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J et al (2017) Parkinson disease Nat Rev Dis Primers 3:17013. https://doi.org/10.1038/nrdp.2017.13
doi: 10.1038/nrdp.2017.13 pubmed: 28332488
Policarpo R, Sierksma A, De Strooper B, d'Ydewalle C (2021) From Junk to Function: LncRNAs in CNS Health and Disease. Front Mol Neurosci 14: 714768 https://doi.org/10.3389/fnmol.2021.714768
Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W et al (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30:1591–1601. https://doi.org/10.1002/mds.26424
doi: 10.1002/mds.26424 pubmed: 26474316
Reeve AK, Grady JP, Cosgrave EM, Bennison E, Chen C, Hepplewhite PD et al (2018) Mitochondrial dysfunction within the synapses of substantia nigra neurons in Parkinson’s disease. NPJ Parkinsons Dis 4:9. https://doi.org/10.1038/s41531-018-0044-6
doi: 10.1038/s41531-018-0044-6 pubmed: 29872690 pmcid: 5979968
Romanov RA, Zeisel A, Bakker J, Girach F, Hellysaz A, Tomer R et al (2017) Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. Nat Neurosci 20:176–188. https://doi.org/10.1038/nn.4462
doi: 10.1038/nn.4462 pubmed: 27991900
Schapira AHV, Chaudhuri KR, Jenner P (2017) Non-motor features of Parkinson disease. Nat Rev Neurosci 18:435–450. https://doi.org/10.1038/nrn.2017.62
doi: 10.1038/nrn.2017.62 pubmed: 28592904
Smyth GK (2005) Limma: linear models for microarray data. Bioinformatics and computational biology solutions using R and Bioconductor. Springer, City, pp 397–420
Soneson C, Love MI, Robinson MD (2015) Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research 4:
Stein LR, Imai S (2012) The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol Metab 23:420–428. https://doi.org/10.1016/j.tem.2012.06.005
doi: 10.1016/j.tem.2012.06.005 pubmed: 22819213 pmcid: 3683958
Stephenson J, Nutma E, van der Valk P, Amor S (2018) Inflammation in CNS neurodegenerative diseases. Immunology 154:204–219. https://doi.org/10.1111/imm.12922
doi: 10.1111/imm.12922 pubmed: 29513402 pmcid: 5980185
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J et al (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447-452. https://doi.org/10.1093/nar/gku1003
doi: 10.1093/nar/gku1003 pubmed: 25352553
Tasic B, Menon V, Nguyen TN, Kim TK, Jarsky T, Yao Z et al (2016) Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat Neurosci 19:335–346. https://doi.org/10.1038/nn.4216
doi: 10.1038/nn.4216 pubmed: 26727548 pmcid: 4985242
Toker L, Tran GT, Sundaresan J, Tysnes OB, Alves G, Haugarvoll K et al (2021) Genome-wide histone acetylation analysis reveals altered transcriptional regulation in the Parkinson’s disease brain. Mol Neurodegener 16:31. https://doi.org/10.1186/s13024-021-00450-7
doi: 10.1186/s13024-021-00450-7 pubmed: 33947435 pmcid: 8097820
Tulke S, Williams P, Hellysaz A, Ilegems E, Wendel M, Broberger C (2016) Nucleobindin 1 (NUCB1) is a Golgi-resident marker of neurons. Neuroscience 314:179–188. https://doi.org/10.1016/j.neuroscience.2015.11.062
doi: 10.1016/j.neuroscience.2015.11.062 pubmed: 26666627
van de Berg WD, Hepp DH, Dijkstra AA, Rozemuller JA, Berendse HW, Foncke E (2012) Patterns of alpha-synuclein pathology in incidental cases and clinical subtypes of Parkinson’s disease. Parkinsonism Relat Disord 18(Suppl 1):S28-30. https://doi.org/10.1016/S1353-8020(11)70011-6
doi: 10.1016/S1353-8020(11)70011-6 pubmed: 22166446
Velmeshev D, Schirmer L, Jung D, Haeussler M, Perez Y, Mayer S et al (2019) Single-cell genomics identifies cell type-specific molecular changes in autism. Science 364:685–689. https://doi.org/10.1126/science.aav8130
doi: 10.1126/science.aav8130 pubmed: 31097668 pmcid: 7678724
Williams ET, Chen X, Moore DJ (2017) VPS35, the retromer complex and Parkinson’s disease. J Parkinsons Dis 7:219–233. https://doi.org/10.3233/JPD-161020
doi: 10.3233/JPD-161020 pubmed: 28222538 pmcid: 5438477
Wu C, Watts ME, Rubin LL (2019) MAP4K4 Activation Mediates Motor Neuron Degeneration in Amyotrophic Lateral Sclerosis. Cell Rep 26: 1143–1156 e1145 https://doi.org/10.1016/j.celrep.2019.01.019
Wyss-Coray T, Mucke L (2002) Inflammation in neurodegenerative disease—a double-edged sword. Neuron 35:419–432
doi: 10.1016/S0896-6273(02)00794-8 pubmed: 12165466
Yahr MD, Duvoisin RC (1972) Pyridoxine and levodopa in the treatment of Parkinsonism. JAMA 220:861
doi: 10.1001/jama.1972.03200060085023 pubmed: 5067358
Zeisel A, Munoz-Manchado AB, Codeluppi S, Lonnerberg P, La Manno G, Jureus A et al (2015) Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347:1138–1142. https://doi.org/10.1126/science.aaa1934
doi: 10.1126/science.aaa1934 pubmed: 25700174
Zhang H, Huang T, Hong Y, Yang W, Zhang X, Luo H et al (2018) The retromer complex and sorting nexins in neurodegenerative diseases. Front Aging Neurosci 10:79. https://doi.org/10.3389/fnagi.2018.00079
doi: 10.3389/fnagi.2018.00079 pubmed: 29632483 pmcid: 5879135

Auteurs

Chiara Cappelletti (C)

Department of Mechanical, Electronics and Chemical Engineering, Faculty of Technology, Art and Design, OsloMet-Oslo Metropolitan University, Oslo, Norway.
Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway.
Department of Neurology, Oslo University Hospital, Oslo, Norway.

Sandra Pilar Henriksen (SP)

Department of Neurology, Oslo University Hospital, Oslo, Norway.

Hanneke Geut (H)

Amsterdam UMC, Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, Netherlands.
Netherlands Brain Bank, Netherlands Institute of Neurosciences, Amsterdam, Netherlands.

Annemieke J M Rozemuller (AJM)

Department of Pathology, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, Netherlands.

Wilma D J van de Berg (WDJ)

Amsterdam UMC, Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, Netherlands.

Lasse Pihlstrøm (L)

Department of Neurology, Oslo University Hospital, Oslo, Norway.

Mathias Toft (M)

Department of Neurology, Oslo University Hospital, Oslo, Norway. mathias.toft@medisin.uio.no.
Institute of Clinical Medicine, University of Oslo, Oslo, Norway. mathias.toft@medisin.uio.no.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH