Sepsis sensitizes behavioural amphetamine responses while inducing inflammatory and neurotrophic vulnerability in the cecal ligation and puncture model.

cytokines dopamine inflammation m‐amphetamine neurotrophic factor

Journal

The European journal of neuroscience
ISSN: 1460-9568
Titre abrégé: Eur J Neurosci
Pays: France
ID NLM: 8918110

Informations de publication

Date de publication:
Mar 2024
Historique:
revised: 02 06 2023
received: 09 11 2022
accepted: 06 06 2023
pmc-release: 23 12 2024
pubmed: 23 6 2023
medline: 23 6 2023
entrez: 23 6 2023
Statut: ppublish

Résumé

The present study aimed to evaluate if sepsis sensitizes behavioural and biochemical responses induced by m-amphetamine. For this, Wistar rats were submitted to the cecal ligation and puncture. After 30 days of cecal ligation and puncture procedure, the animals were submitted to a single intraperitoneal injection of saline or m-amphetamine (.25, .50, or 1.0 mg/kg). Locomotor behaviour was assessed 2 h after the administration. Interleukin (IL)-1β, IL-6, IL-10, tumour necrosis factor-α, dopamine-cAMP-regulated phosphoprotein of 32,000 kDa (DARPP-32) and neuronal calcium sensor (NCS-1) levels were evaluated in the frontal cortex, hippocampus and striatum. Also, brain-derived neurotrophic factor (BDNF), neuronal growth factor and glial-derived neurotrophic factor levels were assessed in the hippocampus. M-amphetamine alone (.25 and 1.0 mg/kg) increased rats' locomotion and exploratory behaviour compared with the Sham + Sal. Animals from the cecal ligation and puncture + m-amphetamine (.5 and/or 1.0 mg/kg) group showed an increase in locomotion, exploratory and risk-like behaviour when compared with the Sham + Saline group and with its respective Sham groups. Cecal ligation and puncture increased interleukin levels compared with the Sham + Sal. However, cecal ligation and puncture animals that received m-amphetamine (1 mg/kg) increased even more, these inflammatory parameters compared with the Sham + Sal and the cecal ligation and puncture + saline group. M-amphetamine at lower doses increased neurotrophic factors, but higher doses decreased these parameters in the brain of cecal ligation and puncture rats. M-amphetamine dose-dependently increased DARPP-32 and NCS-1 levels in cecal ligation and puncture rats in some structures. In conclusion, these results demonstrate that sepsis sensitizes behavioural amphetamine responses while inducing inflammatory and neurotrophic vulnerability in the cecal ligation and puncture model.

Identifiants

pubmed: 37350331
doi: 10.1111/ejn.16064
pmc: PMC10746835
mid: NIHMS1925108
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1153-1168

Subventions

Organisme : NIMH NIH HHS
ID : R21 MH117636
Pays : United States
Organisme : NIMH NIH HHS
ID : 1R21MH117636-01A1
Pays : United States
Organisme : NIMH NIH HHS
ID : 1R21MH117636-01A1
Pays : United States

Informations de copyright

© 2023 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

Références

Beishuizen, A., & Thijs, L. G. (2004). The immunoneuroendocrine axis in critical illness: Beneficial adaptation or neuroendocrine exhaustion? Current Opinion in Critical Care, 10(4), 461–467. https://doi.org/10.1097/01.ccx.0000142748.40422.c8
Bergson, C., Levenson, R., Goldman‐Rakic, P., & Lidow, M. S. (2003). Dopamine receptor‐interacting proteins: The Ca2+ connection in dopamine signaling. Trends in Pharmacological Sciences, 24, 486–492. https://doi.org/10.1016/S0165-6147(03)00232-3
Biff, D., Petronilho, F., Constantino, L., Vuolo, F., Zamora‐Berridi, G. J., Dall'Igna, D. M., Comim, C. M., Quevedo, J., Kapczinski, F., & Dal‐Pizzol, F. (2013). Correlation of acute phase inflammatory and oxidative markers with long‐term cognitive impairment in sepsis survivors rats. Shock, 40(1), 45–48. https://doi.org/10.1097/SHK.0b013e3182959cfa
Bochet, P., Audinat, E., Lambolez, B., Crépel, F., Rossier, J., Iino, M., Tsuzuki, K., & Ozawa, S. (1994). Subunit composition at the single‐cell level explains functional properties of a glutamate‐gated channel. Neuron, 12(2), 383–388. https://doi.org/10.1016/0896-6273(94)90279-8
Broadhurst, P. L. (1960). Experiments in psychogenetics: Application of biometrical genetics to the inheritance of behavior. In H. J. Eisenk (Ed.), Experiments in personality: Psychogenetics and psychopharmacology (pp. 31–71). Routledge & Kegan Paul.
Browne, C. A., Clarke, G., Fitzgerald, P., O'Sullivan, J., Dinan, T. G., & Cryan, J. F. (2022). Distinct post‐sepsis induced neurochemical alterations in two mouse strains. Brain, Behavior, and Immunity, 104, 39–53. https://doi.org/10.1016/j.bbi.2022.05.005
Catoni, C., Calì, T., & Brini, M. (2019). Calcium, dopamine and neuronal calcium sensor 1: Their contribution to Parkinson's disease. Frontiers in Molecular Neuroscience, 12, 55. https://doi.org/10.3389/fnmol.2019.00055
Cechinel‐Recco, K., Valvassori, S. S., Varela, R. B., Resende, W. R., Arent, C. O., Vitto, M. F., Luz, G., de Souza, C. T., & Quevedo, J. (2012). Lithium and tamoxifen modulate cellular plasticity cascades in animal model of mania. Journal of Psychopharmacology, 26(12), 1594–1604. https://doi.org/10.1177/0269881112463124
Comim, C. M., Cassol, O. J. Jr., Constantino, L. S., Felisberto, F., Petronilho, F., Rezin, G. T., Scaini, G., Daufenbach, J. F., Streck, E. L., Quevedo, J., & Dal‐Pizzol, F. (2011). Alterations in inflammatory mediators, oxidative stress parameters and energetic metabolism in the brain of sepsis survivor rats. Neurochemical Research, 36(2), 304–311. https://doi.org/10.1007/s11064-010-0320-2
Comim, C. M., Constantino, L. S., Petronilho, F., de Souza, B., Barichello, T., Quevedo, J., & Dal‐Pizzol, F. (2009). Effects of acute treatment with amphetamine in locomotor activity in sepsis survivor rats. Journal of Neuroimmunology, 212(1–2), 145–147. https://doi.org/10.1016/j.jneuroim.2009.04.005
Comim, C. M., Constantino, L. S., Petronilho, F., Quevedo, J., & Dal‐Pizzol, F. (2011). Aversive memory in sepsis survivor rats. Journal of Neural Transmission (Vienna), 118(2), 213–217. https://doi.org/10.1007/s00702-010-0502-8
Comim, C. M., Silva, N. C., Mina, F., Dominguini, D., Scaini, G., Morais, M. O., Rosa, D. V., Magno, L. A., Streck, E. L., Romano‐Silva, M. A., Quevedo, J., & Dal‐Pizzol, F. (2014). Evaluation of NCS‐1, DARPP‐32, and neurotrophins in hippocampus and prefrontal cortex in rats submitted to sepsis. Synapse, 68(10), 474–479. https://doi.org/10.1002/syn.21760
da Rosa, D. D., Valvassori, S. S., Steckert, A. V., Arent, C. O., Ferreira, C. L., Lopes‐Borges, J., Varela, R. B., Mariot, E., Dal‐Pizzol, F., Andersen, M. L., & Quevedo, J. (2012). Differences between dextroamphetamine and methamphetamine: Behavioral changes and oxidative damage in brain of Wistar rats. Journal of Neural Transmission (Vienna), 119(1), 31–38. https://doi.org/10.1007/s00702-011-0691-9
de Souza Stork, S., Hübner, M., Biehl, E., Danielski, L. G., Bonfante, S., Joaquim, L., Denicol, T., Cidreira, T., Pacheco, A., Bagio, E., Lanzzarin, E., Bernades, G., de Oliveira, M. P., da Silva, L. E., Mack, J. M., Bobinski, F., Rezin, G. T., Barichello, T., Streck, E. L., & Petronilho, F. (2022). Diabetes exacerbates sepsis‐induced neuroinflammation and brain mitochondrial dysfunction. Inflammation, 45, 2352–2367. https://doi.org/10.1007/s10753-022-01697-y
Deng, D., Li, X., Liu, C., Zhai, Z., Li, B., Kuang, M., Li, P., Shang, S., Song, Y., Cen, Y., Qin, R., Lu, Y., Zhao, Y., Cheng, H., Zheng, J., & Zhou, H. (2017). Systematic investigation on the turning point of over‐inflammation to immunosuppression in CLP mice model and their characteristics. International Immunopharmacology, 42, 49–58. https://doi.org/10.1016/j.intimp.2016.11.011
Devroye, C., Cathala, A., Maitre, M., Piazza, P. V., Abrous, D. N., Revest, J. M., & Spampinato, U. (2015). Serotonin2C receptor stimulation inhibits cocaine‐induced Fos expression and DARPP‐32 phosphorylation in the rat striatum independently of dopamine outflow. Neuropharmacology, 89, 375–381. https://doi.org/10.1016/j.neuropharm.2014.10.016
Ehrman, L. A., Williams, M. T., Schaefer, T. L., Gudelsky, G. A., Reed, T. M., Fienberg, A. A., Greengard, P., & Vorhees, C. V. (2006). Phosphodiesterase 1B differentially modulates the effects of methamphetamine on locomotor activity and spatial learning through DARPP32‐dependent pathways: Evidence from PDE1B‐DARPP32 double‐knockout mice. Genes, Brain, and Behavior, 5(7), 540–551. https://doi.org/10.1111/j.1601-183X.2006.00209.x
Erbaş, O., & Taşkıran, D. (2014). Sepsis‐induced changes in behavioral stereotypy in rats; involvement of tumor necrosis factor‐alpha, oxidative stress, and dopamine turnover. The Journal of Surgical Research, 186(1), 262–268. https://doi.org/10.1016/j.jss.2013.08.001
Florentino, D., Della Giustina, A., de Souza Goldim, M. P., Danielski, L. G., de Oliveira Junior, A. N., Joaquim, L., Bonfante, S., Biehl, E., da Rosa, N., Fernandes, D., Gava, F. F., Michels, M., Fortunato, J. J., Réus, G. Z., S Valvassori, S., Quevedo, J., Dal‐Pizzol, F., Barichello, T., & Petronilho, F. (2020). Early life neuroimmune challenge protects the brain after sepsis in adult rats. Neurochemistry International, 135, 104712. https://doi.org/10.1016/j.neuint.2020.104712
Frey, B. N., Andreazza, A. C., Ceresér, K. M., Martins, M. R., Valvassori, S. S., Réus, G. Z., Quevedo, J., & Kapczinski, F. (2006). Effects of mood stabilizers on hippocampus BDNF levels in an animal model of mania. Life Sciences, 79(3), 281–286. https://doi.org/10.1016/j.lfs.2006.01.002
Fries, G. R., Valvassori, S. S., Bock, H., Stertz, L., Magalhães, P. V., Mariot, E., Varela, R. B., Kauer‐Sant'Anna, M., Quevedo, J., Kapczinski, F., & Saraiva‐Pereira, M. L. (2015). Memory and brain‐derived neurotrophic factor after subchronic or chronic amphetamine treatment in an animal model of mania. Journal of Psychiatric Research, 68, 329–336. https://doi.org/10.1016/j.jpsychires.2015.05.006
Fumagalli, F., Racagni, G., Colombo, E., & Riva, M. A. (2003). BDNF gene expression is reduced in the frontal cortex of dopamine transporter knockout mice. Molecular Psychiatry, 8(11), 898–899. https://doi.org/10.1038/sj.mp.4001370
Garcia, L. F., Singh, V., Mireles, B., Dwivedi, A. K., & Walker, W. E. (2023). Common variables that influence sepsis mortality in mice. Journal of Inflammation Research, 16, 1121–1134. https://doi.org/10.2147/JIR.S400115
He, W., Jiang, M., Mao, P., & Yan, F. (2020). TLR4 inhibition ameliorates mesencephalic substantia nigra injury in neonatal rats exposed to lipopolysaccharide via regulation of neuro‐immunity. Brain Research Bulletin, 165, 90–96. https://doi.org/10.1016/j.brainresbull.2020.09.012
Heal, D. J., Smith, S. L., Gosden, J., & Nutt, D. J. (2013). Amphetamine, past and present‐‐a pharmacological and clinical perspective. Journal of Psychopharmacology, 27(6), 479–496. https://doi.org/10.1177/0269881113482532
Hollmann, M., Hartley, M., & Heinemann, S. (1991). Ca2+ permeability of KA‐AMPA–gated glutamate receptor channels depends on subunit composition. Science, 252(5007), 851–853. https://doi.org/10.1126/science.1709304
Hubbard, W. J., Choudhry, M., Schwacha, M. G., Kerby, J. D., Rue, L. W. 3rd, Bland, K. I., & Chaudry, I. H. (2005). Cecal ligation and puncture. Shock, 24, 52–57. https://doi.org/10.1097/01.shk.0000191414.94461.7e
Hume, R. I., Dingledine, R., & Heinemann, S. F. (1991). Identification of a site in glutamate receptor subunits that controls calcium permeability. Science, 253(5023), 1028–1031. https://doi.org/10.1126/science.1653450
Iwashyna, T. J., Ely, E. W., Smith, D. M., & Langa, K. M. (2010). Long‐term cognitive impairment and functional disability among survivors of severe sepsis. Jama, 304, 1787–1794. https://doi.org/10.1001/jama.2010.1553
Ji, M., Li, S., Zhang, L., Gao, Y., Zeng, Q., Mao, M., & Yang, J. (2020). Sepsis induced cognitive impairments by disrupting hippocampal parvalbumin interneuron‐mediated inhibitory network via a D4‐receptor mechanism. Aging (Albany NY), 12(3), 2471–2484. https://doi.org/10.18632/aging.102755
Ji, M. H., Xia, D. G., Zhu, L. Y., Zhu, X., Zhou, X. Y., Xia, J. Y., & Yang, J. J. (2018). Short‐ and long‐term protective effects of melatonin in a mouse model of sepsis‐associated encephalopathy. Inflammation, 41(2), 515–529. https://doi.org/10.1007/s10753-017-0708-0
Jiang, S., Bai, L., Zhang, X., Zhou, X., & Liu, Y. (2022). Preexposure to heat stress attenuates sepsis‐associated inflammation and cognitive decline in rats. Neuroscience Letters, 780, 136647. https://doi.org/10.1016/j.neulet.2022.136647
Jonas, P., Racca, C., Sakmann, B., Seeburg, P. H., & Monyer, H. (1994). Differences in Ca2+ permeability of AMPA‐type glutamate receptor channels in neocortical neurons caused by differential GluR‐B subunit expression. Neuron, 12(6), 1281–1289. https://doi.org/10.1016/0896-6273(94)90444-8
Kabbani, N., Negyessy, L., Lin, R., Goldman‐Rakic, P., & Levenson, R. (2002). Interaction with neuronal calcium sensor NCS‐1 mediates desensitization of the D2 dopamine receptor. The Journal of Neuroscience, 22(19), 8476–8486. https://doi.org/10.1523/JNEUROSCI.22-19-08476.2002
Kavelaars, A., Cobelens, P. M., Teunis, M. A., & Heijnen, C. J. (2005). Changes in innate and acquired immune responses in mice with targeted deletion of the dopamine transporter gene. Journal of Neuroimmunology, 161, 162–168. https://doi.org/10.1016/j.jneuroim.2005.01.004
Kebabian, J. W., & Calne, D. B. (1979). Multiple receptors for dopamine. Nature, 277, 93–96. https://doi.org/10.1038/277093a0
Kebabian, J. W., & Greengard, P. (1971). Dopamine‐sensitive adenyl cyclase: Possible role in synaptic transmission. Science, 174, 1346–1349. https://doi.org/10.1126/science.174.4016.1346
Koh, P. O., Undie, A. S., Kabbani, N., Levenson, R., Goldman‐Rakic, P., & Lidow, M. S. (2003). Up‐regulation of neuronal calcium sensor‐1 (NCS‐1) in the prefrontal cortex of schizophrenic and bipolar patients. Proceedings of the National Academy of Sciences, 100, 313–317. https://doi.org/10.1073/pnas.232693499
Li, F., Zhang, B., Duan, S., Qing, W., Tan, L., Chen, S., Wang, Y., Li, D., Yang, J., Tong, J., Fang, J., & Le, Y. (2020). Small dose of L‐dopa/benserazide hydrochloride improved sepsis‐induced neuroinflammation and long‐term cognitive dysfunction in sepsis mice. Brain Research, 1737, 146780. https://doi.org/10.1007/10.1016/j.brainres.2020.146780
Lin, H. C., Wan, F. J., Kang, B. H., Wu, C. C., & Tseng, C. J. (1999). Systemic administration of lipopolysaccharide induces release of nitric oxide and glutamate and c‐Fos expression in the nucleus tractus solitarii of rats. Hypertension, 33(5), 1218–1224. https://doi.org/10.1161/01.hyp.33.5.1218
Liu, L., Xie, K., Chen, H., Dong, X., Li, Y., Yu, Y., Wang, G., & Yu, Y. (2014). Inhalation of hydrogen gas attenuates brain injury in mice with cecal ligation and puncture via inhibiting neuroinflammation, oxidative stress and neuronal apoptosis. Brain Research, 1589, 78–92. https://doi.org/10.1016/j.brainres.2014.09.030
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6
Menegas, S., Dal‐Pont, G. C., Cararo, J. H., Varela, R. B., Aguiar‐Geraldo, J. M., Possamai‐Della, T., Andersen, M. L., Quevedo, J., & Valvassori, S. S. (2020). Efficacy of folic acid as an adjunct to lithium therapy on manic‐like behaviors, oxidative stress and inflammatory parameters in an animal model of mania. Metabolic Brain Disease, 35(2), 413–425. https://doi.org/10.1007/s11011-019-00503-3
Michelon, C., Michels, M., Abatti, M., Vieira, A., Borges, H., Dominguini, D., Barichello, T., & Dal‐Pizzol, F. (2020). The role of secretase pathway in long‐term brain inflammation and cognitive impairment in an animal model of severe sepsis. Molecular Neurobiology, 57(2), 1159–1169. https://doi.org/10.1007/s12035-019-01808-1
Missale, C., Nash, S. R., Robinson, S. W., Jaber, M., & Caron, M. G. (1998). Dopamine receptors: From structure to function. Physiological Reviews, 78, 189–225. https://doi.org/10.1152/physrev.1998.78.1.189
Moreira da Silva Santos, A., Kelly, J. P., & Doyle, K. M. (2018). Dose‐dependent effects of binge‐like methamphetamine dosing on dopamine and neurotrophin levels in rat brain. Neuropsychobiology, 75(2), 63–71. https://doi.org/10.1159/000480513
Nakao, S., Wakabayashi, S., & Nakamura, T. Y. (2015). Stimulus‐dependent regulation of nuclear Ca2+ signaling in cardiomyocytes: A role of neuronal calcium sensor‐1. PLoS ONE, 10(4), e0125050. https://doi.org/10.1371/journal.pone.0125050
Negyessy, L., & Goldman‐Rakic, P. S. (2005). Subcellular localization of the dopamine D2 receptor and coexistence with the calcium‐binding protein neuronal calcium sensor‐1 in the primate prefrontal cortex. The Journal of Comparative Neurology, 488(4), 464–475. https://doi.org/10.1002/cne.20601
Nishi, A., & Shuto, T. (2017). Potential for targeting dopamine/DARPP‐32 signaling in neuropsychiatric and neurodegenerative disorders. Expert Opinion on Therapeutic Targets, 21(3), 259–272. https://doi.org/10.1080/14728222.2017.1279149
Peterson, G. L. (1977). A simplification of the protein assay method of Lowry et al. which is more generally applicable. Analytical Biochemistry, 83(2), 346–356. https://doi.org/10.1016/0003-2697(77)90043-4
Rello, J., Valenzuela‐Sánchez, F., Ruiz‐Rodriguez, M., & Moyano, S. (2017). Sepsis: A review of advances in management. Advances in Therapy, 34(11), 2393–2411. https://doi.org/10.1007/s12325-017-0622-8
Rittirsch, D., Huber‐Lang, M. S., Flierl, M. A., & Ward, P. A. (2009). Immunodesign of experimental sepsis by cecal ligation and puncture. Nature Protocols, 4(1), 31–36. https://doi.org/10.1038/nprot.2008.214
Rocha, M., Vieira, A., Michels, M., Borges, H., Goulart, A., Fernandes, F., Dominguini, D., Ritter, C., & Dal‐Pizzol, F. (2021). Effects of S100B neutralization on the long‐term cognitive impairment and neuroinflammatory response in an animal model of sepsis. Neurochemistry International, 142, 104906. https://doi.org/10.1016/j.neuint.2020.104906
Scheggi, S., De Montis, M. G., & Gambarana, C. (2018). DARPP‐32 in the orchestration of responses to positive natural stimuli. Journal of Neurochemistry, 147(4), 439–453. https://doi.org/10.1111/jnc.14558
Schultz, W., & Ungerstedt, U. (1978). Striatal cell supersensitivity to apomorphine in dopamine‐lesioned rats correlated to behaviour. Neuropharmacology, 17(6), 349–353. https://doi.org/10.1016/0028-3908(78)90005-9
Seemann, S., Zohles, F., & Lupp, A. (2017). Comprehensive comparison of three different animal models for systemic inflammation. Journal of Biomedical Science, 24(1), 60. https://doi.org/10.1186/s12929-017-0370-8
Streck, E. L., Comim, C. M., Barichello, T., & Quevedo, J. (2008). The septic brain. Neurochemical Research, 33, 2171–2177. https://doi.org/10.1007/s11064-008-9671-3
Svenningsson, P., Tzavara, E. T., Carruthers, R., Rachleff, I., Wattler, S., Nehls, M., McKinzie, D. L., Fienberg, A. A., Nomikos, G. G., & Greengard, P. (2003). Diverse psychotomimetics act through a common signaling pathway. Science, 302(5649), 1412–1415. https://doi.org/10.1126/science.1089681
Valvassori, S. S., Dal‐Pont, G. C., Tonin, P. T., Varela, R. B., Ferreira, C. L., Gava, F. F., Andersen, M. L., Soares, J. C., & Quevedo, J. (2019). Coadministration of lithium and celecoxib attenuates the behavioral alterations and inflammatory processes induced by amphetamine in an animal model of mania. Pharmacology, Biochemistry, and Behavior, 183, 56–63. https://doi.org/10.1016/j.pbb.2019.05.009
Valvassori, S. S., Mariot, E., Varela, R. B., Bavaresco, D. V., Dal‐Pont, G. C., Ferreira, C. L., Andersen, M. L., Tye, S. J., & Quevedo, J. (2019). The role of neurotrophic factors in manic‐, anxious‐ and depressive‐like behaviors induced by amphetamine sensitization: Implications to the animal model of bipolar disorder. Journal of Affective Disorders, 245, 1106–1113. https://doi.org/10.1016/j.jad.2018.10.370
Valvassori, S. S., Tonin, P. T., Varela, R. B., Carvalho, A. F., Mariot, E., Amboni, R. T., Bianchini, G., Andersen, M. L., & Quevedo, J. (2015). Lithium modulates the production of peripheral and cerebral cytokines in an animal model of mania induced by dextroamphetamine. Bipolar Disorders, 17, 507–517. https://doi.org/10.1111/bdi.12299
von Bohlen Und Halbach, O., & von Bohlen Und Halbach, V. (2018). BDNF effects on dendritic spine morphology and hippocampal function. Cell and Tissue Research, 373(3), 729–741. https://doi.org/10.1007/s00441-017-2782-x
Wang, W. W., Cao, R., Rao, Z. R., & Chen, L. W. (2004). Differential expression of NMDA and AMPA receptor subunits in DARPP‐32‐containing neurons of the cerebral cortex, hippocampus and neostriatum of rats. Brain Research, 998(2), 174–183. https://doi.org/10.1016/j.brainres.2003.11.034

Auteurs

Samira S Valvassori (SS)

Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil.

Taise Possamai-Della (T)

Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil.

Jorge M Aguiar-Geraldo (JM)

Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil.

Rômulo Goronci Sant'Ana (RG)

Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil.

Gustavo C Dal-Pont (GC)

Translational Health Research Laboratory, Alto Vale do Rio do Peixe University, Caçador, Brazil.

Bruna Pescador (B)

Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil.

Alexandra I Zugno (AI)

Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil.

João Quevedo (J)

Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil.
Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA.
Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA.
Center for Interventional Psychiatry, Faillace Department of Psychiatry and Behavior Sciences, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA.

Felipe Dal-Pizzol (F)

Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil.

Classifications MeSH