Genome analysis of Cephalotrichum gorgonifer and identification of the biosynthetic pathway for rasfonin, an inhibitor of KRAS dependent cancer.
Biosynthetic gene cluster prediction
Cephalotrichum
Doratomyces NG_p51
Genome analysis
In silico retrosynthesis
Natural products discovery
Rasfonin
Secondary metabolism
Transcriptome analysis
Journal
Fungal biology and biotechnology
ISSN: 2054-3085
Titre abrégé: Fungal Biol Biotechnol
Pays: England
ID NLM: 101655873
Informations de publication
Date de publication:
24 Jun 2023
24 Jun 2023
Historique:
received:
08
11
2022
accepted:
28
04
2023
medline:
25
6
2023
pubmed:
25
6
2023
entrez:
24
6
2023
Statut:
epublish
Résumé
Fungi are important sources for bioactive compounds that find their applications in many important sectors like in the pharma-, food- or agricultural industries. In an environmental monitoring project for fungi involved in soil nitrogen cycling we also isolated Cephalotrichum gorgonifer (strain NG_p51). In the course of strain characterisation work we found that this strain is able to naturally produce high amounts of rasfonin, a polyketide inducing autophagy, apoptosis, necroptosis in human cell lines and showing anti-tumor activity in KRAS-dependent cancer cells. In order to elucidate the biosynthetic pathway of rasfonin, the strain was genome sequenced, annotated, submitted to transcriptome analysis and genetic transformation was established. Biosynthetic gene cluster (BGC) prediction revealed the existence of 22 BGCs of which the majority was not expressed under our experimental conditions. In silico prediction revealed two BGCs with a suite of enzymes possibly involved in rasfonin biosynthesis. Experimental verification by gene-knock out of the key enzyme genes showed that one of the predicted BGCs is indeed responsible for rasfonin biosynthesis. This study identified a biosynthetic gene cluster containing a key-gene responsible for rasfonin production. Additionally, molecular tools were established for the non-model fungus Cephalotrichum gorgonifer which allows strain engineering and heterologous expression of the BGC for high rasfonin producing strains and the biosynthesis of rasfonin derivates for diverse applications.
Sections du résumé
BACKGROUND
BACKGROUND
Fungi are important sources for bioactive compounds that find their applications in many important sectors like in the pharma-, food- or agricultural industries. In an environmental monitoring project for fungi involved in soil nitrogen cycling we also isolated Cephalotrichum gorgonifer (strain NG_p51). In the course of strain characterisation work we found that this strain is able to naturally produce high amounts of rasfonin, a polyketide inducing autophagy, apoptosis, necroptosis in human cell lines and showing anti-tumor activity in KRAS-dependent cancer cells.
RESULTS
RESULTS
In order to elucidate the biosynthetic pathway of rasfonin, the strain was genome sequenced, annotated, submitted to transcriptome analysis and genetic transformation was established. Biosynthetic gene cluster (BGC) prediction revealed the existence of 22 BGCs of which the majority was not expressed under our experimental conditions. In silico prediction revealed two BGCs with a suite of enzymes possibly involved in rasfonin biosynthesis. Experimental verification by gene-knock out of the key enzyme genes showed that one of the predicted BGCs is indeed responsible for rasfonin biosynthesis.
CONCLUSIONS
CONCLUSIONS
This study identified a biosynthetic gene cluster containing a key-gene responsible for rasfonin production. Additionally, molecular tools were established for the non-model fungus Cephalotrichum gorgonifer which allows strain engineering and heterologous expression of the BGC for high rasfonin producing strains and the biosynthesis of rasfonin derivates for diverse applications.
Identifiants
pubmed: 37355668
doi: 10.1186/s40694-023-00158-x
pii: 10.1186/s40694-023-00158-x
pmc: PMC10290801
doi:
Types de publication
Journal Article
Langues
eng
Pagination
13Subventions
Organisme : Austrian Science Fund
ID : P32790-B1
Organisme : Austrian Science Fund
ID : T 1266-B
Organisme : Austrian Science Fund
ID : P32790-B1
Organisme : Gesellschaft für Forschungsförderung Niederösterreich
ID : LS19-009
Organisme : Gesellschaft für Forschungsförderung Niederösterreich
ID : K3-G-2/08-2020
Organisme : Gesellschaft für Forschungsförderung Niederösterreich
ID : LS19-009
Organisme : Gesellschaft für Forschungsförderung Niederösterreich
ID : K3-G-2/08-2020
Organisme : Gesellschaft für Forschungsförderung Niederösterreich
ID : K3-G-2/08-2020
Organisme : Gesellschaft für Forschungsförderung Niederösterreich
ID : K3-G-2/08-2020
Organisme : Gesellschaft für Forschungsförderung Niederösterreich
ID : K3-G-2/08-2020
Organisme : Gesellschaft für Forschungsförderung Niederösterreich
ID : K3-G-2/08-2020
Organisme : Gesellschaft für Forschungsförderung Niederösterreich
ID : LS19-009
Informations de copyright
© 2023. The Author(s).
Références
Mycol Res. 2007 Jul;111(Pt 7):850-5
pubmed: 17662587
Appl Microbiol Biotechnol. 2018 Jan;102(1):279-295
pubmed: 29080998
Am J Bot. 2011 Mar;98(3):426-38
pubmed: 21613136
BMC Genomics. 2020 Jan 2;21(1):7
pubmed: 31898475
Bioinformatics. 2015 Jan 15;31(2):166-9
pubmed: 25260700
Mol Biol Evol. 2018 Jun 1;35(6):1547-1549
pubmed: 29722887
BMC Microbiol. 2007 Nov 26;7:104
pubmed: 18039373
Chem Sci. 2018 Nov 27;10(1):73-82
pubmed: 30746075
Bioinformatics. 2009 Jul 15;25(14):1754-60
pubmed: 19451168
Front Microbiol. 2016 Apr 13;7:510
pubmed: 27148199
Chem Commun (Camb). 2016 May 21;52(41):6777-80
pubmed: 27056201
Chem Biodivers. 2020 Dec;17(12):e2000743
pubmed: 33155352
Bioinformatics. 2011 Feb 15;27(4):578-9
pubmed: 21149342
Cell Death Dis. 2015 Dec 03;6:e2005
pubmed: 26633711
Mycobiology. 2019 Nov 14;47(4):483-493
pubmed: 32010470
Mol Microbiol. 2010 Jun;76(6):1376-86
pubmed: 20132440
J Am Chem Soc. 2020 May 6;142(18):8464-8472
pubmed: 32275405
Nucleic Acids Res. 2002 Jan 1;30(1):207-10
pubmed: 11752295
Toxins (Basel). 2022 Jan 25;14(2):
pubmed: 35202124
Appl Microbiol Biotechnol. 2020 Nov;104(22):9801-9822
pubmed: 33006690
Genome Biol Evol. 2022 Jan 4;14(1):
pubmed: 35104337
Beijing Da Xue Xue Bao Yi Xue Ban. 2019 Apr 18;51(2):234-238
pubmed: 30996359
Mar Drugs. 2017 Aug 13;15(8):
pubmed: 28805714
Sci Adv. 2022 Apr 29;8(17):eabo6094
pubmed: 35476435
Nat Chem Biol. 2015 Sep;11(9):625-31
pubmed: 26284661
Environ Sci Pollut Res Int. 2021 May;28(17):20998-21008
pubmed: 33694116
Bioinformatics. 2014 Aug 1;30(15):2114-20
pubmed: 24695404
Chem Commun (Camb). 2012 Dec 14;48(96):11772-4
pubmed: 23108075
Mol Genet Genomics. 2002 Jul;267(5):636-46
pubmed: 12172803
Biopolymers. 2010 Sep;93(9):755-63
pubmed: 20577995
J Nat Prod. 2017 May 26;80(5):1235-1240
pubmed: 28467083
J Nat Prod. 2015 Aug 28;78(8):1809-15
pubmed: 26192387
Comput Struct Biotechnol J. 2021 Aug 18;19:4825-4839
pubmed: 34522290
BMC Biotechnol. 2017 Feb 16;17(1):16
pubmed: 28209150
Genetics. 1965 Jul;52(1):233-46
pubmed: 5857598
Metab Eng. 2011 Nov;13(6):723-32
pubmed: 21983160
PLoS One. 2015 Jul 15;10(7):e0133085
pubmed: 26177455
J Am Chem Soc. 2009 Mar 4;131(8):2965-70
pubmed: 19199437
ISME J. 2011 Nov;5(11):1771-83
pubmed: 21562596
Sci Rep. 2017 Mar 13;7:44296
pubmed: 28287158
Molecules. 2018 Sep 02;23(9):
pubmed: 30200525
Stud Mycol. 2017 Sep;88:137-159
pubmed: 29158610
Chembiochem. 2011 Aug 16;12(12):1836-9
pubmed: 21698737
Gigascience. 2021 Feb 16;10(2):
pubmed: 33590861
Proc Natl Acad Sci U S A. 2021 May 11;118(19):
pubmed: 33941694
Gene. 1992 Jan 2;110(1):119-22
pubmed: 1544568
Front Microbiol. 2019 Aug 13;10:1759
pubmed: 31456754
Appl Environ Microbiol. 2006 Mar;72(3):1793-9
pubmed: 16517624
Stud Mycol. 2016;83:193-233
pubmed: 27616803
Fungal Genet Biol. 2022 Sep;162:103726
pubmed: 35843417
Environ Microbiol. 2017 Apr;19(4):1653-1668
pubmed: 28198137
Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1418-22
pubmed: 8643646
FEMS Microbiol Rev. 2019 Nov 1;43(6):591-607
pubmed: 31301226
Molecules. 2016 Dec 13;21(12):
pubmed: 27983606
Fungal Biol. 2021 Nov;125(11):905-913
pubmed: 34649677
Cell Death Dis. 2014 May 22;5:e1241
pubmed: 24853419
PLoS Pathog. 2013;9(6):e1003475
pubmed: 23825955
Mol Microbiol. 2015 Jun;96(6):1103-18
pubmed: 25757597
Curr Opin Drug Discov Devel. 2001 Mar;4(2):229-36
pubmed: 11378962
Nucleic Acids Res. 2009 Jan;37(Database issue):D408-11
pubmed: 18940859
Genome Biol. 2014 Feb 03;15(2):R29
pubmed: 24485249
Chem Commun (Camb). 2015 Feb 4;51(10):1878-81
pubmed: 25530455
Genome Res. 2008 Dec;18(12):1979-90
pubmed: 18757608
Nat Rev Microbiol. 2019 Mar;17(3):167-180
pubmed: 30531948
PLoS One. 2013 May 07;8(5):e63077
pubmed: 23667578
Molecules. 2021 Oct 30;26(21):
pubmed: 34770997
Chem Pharm Bull (Tokyo). 2005 Aug;53(8):923-9
pubmed: 16079521
Fungal Divers. 2010 Oct;44(1):65-75
pubmed: 23794962
Mol Plant Pathol. 2013 Jun;14(5):497-505
pubmed: 23438010
Fungal Genet Biol. 2012 Jun;49(6):483-97
pubmed: 22503771
Mol Plant Microbe Interact. 2020 Feb;33(2):200-211
pubmed: 31567040
Pharmaceutics. 2022 Aug 31;14(9):
pubmed: 36145585
Mol Biol Evol. 1993 May;10(3):512-26
pubmed: 8336541
Chembiochem. 2023 Mar 14;24(6):e202200342
pubmed: 36137261
Biotechnol Adv. 2019 Nov 1;37(6):107345
pubmed: 30738111
Microb Cell Fact. 2017 Oct 3;16(1):168
pubmed: 28974205
Front Plant Sci. 2015 Aug 06;6:573
pubmed: 26300892
Angew Chem Int Ed Engl. 2013 Jun 17;52(25):6472-5
pubmed: 23653178
Genes Dev. 1990 Sep;4(9):1473-82
pubmed: 2253875
Curr Genet. 2002 Jun;41(3):183-8
pubmed: 12174821
Nucleic Acids Res. 1992 May 11;20(9):2380
pubmed: 1594460
Z Naturforsch C J Biosci. 2006 Jan-Feb;61(1-2):95-8
pubmed: 16610224
Front Microbiol. 2019 Jun 06;10:1265
pubmed: 31244797
Bioinformatics. 2010 Mar 15;26(6):841-2
pubmed: 20110278
Nucleic Acids Res. 1994 Nov 11;22(22):4673-80
pubmed: 7984417
Mol Plant Pathol. 2011 Aug;12(6):564-79
pubmed: 21722295
Anal Bioanal Chem. 2020 Apr;412(11):2607-2620
pubmed: 32078002
PLoS Genet. 2016 Aug 22;12(8):e1006222
pubmed: 27548260
Nucleic Acids Res. 2021 Jul 2;49(W1):W29-W35
pubmed: 33978755
Appl Microbiol Biotechnol. 2012 Sep;95(6):1389-404
pubmed: 22814413