Developmental and temporal changes in petunia petal transcriptome reveal scent-repressing plant-specific RING-kinase-WD40 protein.

daytime flower development petunia scent regulation transcriptome

Journal

Frontiers in plant science
ISSN: 1664-462X
Titre abrégé: Front Plant Sci
Pays: Switzerland
ID NLM: 101568200

Informations de publication

Date de publication:
2023
Historique:
received: 06 03 2023
accepted: 05 05 2023
medline: 26 6 2023
pubmed: 26 6 2023
entrez: 26 6 2023
Statut: epublish

Résumé

In moth-pollinated petunias, production of floral volatiles initiates when the flower opens and occurs rhythmically during the day, for optimal flower-pollinator interaction. To characterize the developmental transcriptomic response to time of day, we generated RNA-Seq databases for corollas of floral buds and mature flowers in the morning and in the evening. Around 70% of transcripts accumulating in petals demonstrated significant changes in expression levels in response to the flowers' transition from a 4.5-cm bud to a flower 1 day postanthesis (1DPA). Overall, 44% of the petal transcripts were differentially expressed in the morning vs. evening. Morning/evening changes were affected by flower developmental stage, with a 2.5-fold larger transcriptomic response to daytime in 1DPA flowers compared to buds. Analyzed genes known to encode enzymes in volatile organic compound biosynthesis were upregulated in 1DPA flowers vs. buds-in parallel with the activation of scent production. Based on analysis of global changes in the petal transcriptome, PhWD2 was identified as a putative scent-related factor. PhWD2 is a protein that is uniquely present in plants and has a three-domain structure: RING-kinase-WD40. Suppression of

Identifiants

pubmed: 37360732
doi: 10.3389/fpls.2023.1180899
pmc: PMC10286513
doi:

Types de publication

Journal Article

Langues

eng

Pagination

1180899

Informations de copyright

Copyright © 2023 Shor, Skaliter, Sharon, Kitsberg, Bednarczyk, Kerzner, Vainstein, Tabach and Vainstein.

Déclaration de conflit d'intérêts

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Références

Bioinformatics. 2015 Jan 15;31(2):166-9
pubmed: 25260700
Plant Biotechnol J. 2008 May;6(4):403-15
pubmed: 18346094
Methods Mol Biol. 2013;975:139-48
pubmed: 23386300
Plant Direct. 2018 Dec 04;2(12):e00099
pubmed: 31245700
Front Plant Sci. 2017 Nov 03;8:1898
pubmed: 29163617
Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):9775-80
pubmed: 26124104
Front Plant Sci. 2021 Jun 14;12:683516
pubmed: 34194455
Plant Physiol. 2004 Aug;135(4):1993-2011
pubmed: 15286288
Science. 2017 Jun 30;356(6345):1386-1388
pubmed: 28663500
Plant Cell. 2012 Dec;24(12):5089-105
pubmed: 23275577
Plant Cell. 2005 May;17(5):1612-24
pubmed: 15805488
Plant Physiol. 2009 Nov;151(3):1114-29
pubmed: 19710231
PLoS One. 2011 Apr 27;6(4):e18910
pubmed: 21556138
Plant Cell. 2012 May;24(5):2015-30
pubmed: 22649270
Curr Opin Biotechnol. 2021 Aug;70:213-219
pubmed: 34217123
Plant Cell Environ. 2014 Aug;37(8):1936-49
pubmed: 24588567
Plant Cell. 2016 Mar;28(3):786-803
pubmed: 26977085
Plant Cell Environ. 2017 Nov;40(11):2571-2585
pubmed: 28732105
Mol Plant. 2019 Oct 7;12(10):1315-1324
pubmed: 31557534
Nat Commun. 2022 Mar 15;13(1):1352
pubmed: 35292635
New Phytol. 2013 Jan;197(2):454-467
pubmed: 23157553
Phytochemistry. 2010 Feb;71(2-3):158-67
pubmed: 19889429
New Phytol. 2017 Jul;215(1):411-422
pubmed: 28262954
Planta. 2021 Dec 11;255(1):18
pubmed: 34894276
Plant Cell. 2014 Mar;26(3):962-80
pubmed: 24642943
New Phytol. 2017 Sep;215(4):1490-1502
pubmed: 28675474
Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W327-31
pubmed: 15215404
Genome Biol. 2014;15(12):550
pubmed: 25516281
Nat Commun. 2019 Sep 16;10(1):4216
pubmed: 31527679
J Exp Bot. 2011 Jan;62(3):1133-43
pubmed: 21068208
Sci Rep. 2018 Feb 12;8(1):2842
pubmed: 29434312
Plant Physiol. 2005 Jan;137(1):13-30
pubmed: 15644464
Bioinformatics. 2012 Oct 1;28(19):2520-2
pubmed: 22908215
New Phytol. 2016 Oct;212(1):136-49
pubmed: 27240972
Plant Cell. 2006 May;18(5):1274-91
pubmed: 16603655
Plant Cell. 1999 Jul;11(7):1337-50
pubmed: 10402433
J Exp Bot. 2021 May 4;72(10):3704-3722
pubmed: 33606881
PLoS One. 2010 Nov 23;5(11):e14101
pubmed: 21124901
Trends Plant Sci. 2020 Jul;25(7):670-681
pubmed: 32526172
Cold Spring Harb Symp Quant Biol. 2012;77:117-33
pubmed: 23467550
Nat Plants. 2016 May 27;2(6):16074
pubmed: 27255838
Nature. 1994 Sep 22;371(6495):297-300
pubmed: 8090199
Nature. 2007 Jul 19;448(7151):358-61
pubmed: 17589502
Plant Physiol. 2007 Dec;145(4):1241-50
pubmed: 17720754
PLoS One. 2011;6(6):e16907
pubmed: 21694767
Trends Plant Sci. 2005 Feb;10(2):63-70
pubmed: 15708343
Nucleic Acids Res. 2020 Jan 8;48(D1):D682-D688
pubmed: 31691826
Bioinformatics. 2019 Nov 1;35(22):4824-4826
pubmed: 31161214
Nucleic Acids Res. 2020 Jan 8;48(D1):D9-D16
pubmed: 31602479
Bioinformatics. 2016 Sep 15;32(18):2847-9
pubmed: 27207943
Plant J. 2021 Jun;106(6):1746-1758
pubmed: 33837586
Plant Biotechnol J. 2022 Sep;20(9):1651-1669
pubmed: 35638340
Ann Bot. 2018 Mar 14;121(4):711-721
pubmed: 29360931
New Phytol. 2015 Nov;208(3):708-14
pubmed: 26111005
Hortic Res. 2018 Jun 1;5:27
pubmed: 29872532
J Exp Bot. 2017 Oct 13;68(17):4737-4748
pubmed: 28992300
Philos Trans R Soc Lond B Biol Sci. 2017 Nov 19;372(1734):
pubmed: 28993499
Plant Cell. 2004 Feb;16(2):450-64
pubmed: 14742877
Nat Chem Biol. 2021 Feb;17(2):138-145
pubmed: 33077978
Plant Cell. 2010 Mar;22(3):832-49
pubmed: 20215586
Plant Mol Biol. 2018 Feb;96(3):265-278
pubmed: 29270890
Plant Cell. 2006 Dec;18(12):3415-28
pubmed: 17194765
Plant Cell. 2005 Dec;17(12):3257-81
pubmed: 16299223
Planta. 2005 Sep;222(1):141-50
pubmed: 15891900
Plant J. 2011 Mar;65(5):771-84
pubmed: 21235651
Bioinformatics. 2013 Jan 1;29(1):15-21
pubmed: 23104886
Plant J. 2006 Jun;46(5):768-79
pubmed: 16709193
Science. 2005 Jul 22;309(5734):630-3
pubmed: 16040710
Genes (Basel). 2019 Oct 30;10(11):
pubmed: 31671570
Plant J. 2004 Oct;40(1):22-34
pubmed: 15361138
Sci Rep. 2020 Jan 14;10(1):275
pubmed: 31937847
Genes Dev. 1997 Jun 1;11(11):1422-34
pubmed: 9192870
Genes (Basel). 2020 Oct 29;11(11):
pubmed: 33138078
Sci Rep. 2017 Feb 22;7:43382
pubmed: 28225056
Plant Direct. 2019 Jan 21;3(1):e00114
pubmed: 31245756
iScience. 2020 Aug 21;23(8):101384
pubmed: 32738617
Plant J. 2009 Aug;59(3):499-508
pubmed: 19392710
Plant Cell. 2010 Jun;22(6):1961-76
pubmed: 20543029
Trends Plant Sci. 2012 Oct;17(10):584-93
pubmed: 22705257
Plant Physiol. 2023 May 2;192(1):409-425
pubmed: 36760164
J Mol Biol. 1990 Oct 5;215(3):403-10
pubmed: 2231712
Plant J. 1999 Aug;19(4):441-51
pubmed: 10504566

Auteurs

Ekaterina Shor (E)

The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel.

Oded Skaliter (O)

The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel.

Elad Sharon (E)

The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel.
The Institute for Medical Research, Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.

Yaarit Kitsberg (Y)

The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel.

Dominika Bednarczyk (D)

The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel.

Shane Kerzner (S)

The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel.

Danny Vainstein (D)

School of Computer Science, Tel Aviv University, Tel Aviv, Israel.

Yuval Tabach (Y)

The Institute for Medical Research, Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel.

Alexander Vainstein (A)

The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel.

Classifications MeSH