Amplified Plasmonic Forces from DNA Origami-Scaffolded Single Dyes in Nanogaps.
DNA origami
metal nanoparticle
picocavities
plasmonic nanocavity
quantum emitters
surface-enhanced Raman spectroscopy
Journal
Nano letters
ISSN: 1530-6992
Titre abrégé: Nano Lett
Pays: United States
ID NLM: 101088070
Informations de publication
Date de publication:
12 Jul 2023
12 Jul 2023
Historique:
medline:
26
6
2023
pubmed:
26
6
2023
entrez:
26
6
2023
Statut:
ppublish
Résumé
Developing highly enhanced plasmonic nanocavities allows direct observation of light-matter interactions at the nanoscale. With DNA origami, the ability to precisely nanoposition single-quantum emitters in ultranarrow plasmonic gaps enables detailed study of their modified light emission. By developing protocols for creating nanoparticle-on-mirror constructs in which DNA nanostructures act as reliable and customizable spacers for nanoparticle binding, we reveal that the simple picture of Purcell-enhanced molecular dye emission is misleading. Instead, we show that the enhanced dipolar dye polarizability greatly amplifies optical forces acting on the facet Au atoms, leading to their rapid destabilization. Using different dyes, we find that emission spectra are dominated by inelastic (Raman) scattering from molecules and metals, instead of fluorescence, with molecular bleaching also not evident despite the large structural rearrangements. This implies that the competition between recombination pathways demands a rethink of routes to quantum optics using plasmonics.
Identifiants
pubmed: 37364270
doi: 10.1021/acs.nanolett.3c01016
pmc: PMC10347698
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5959-5966Références
Nat Mater. 2019 Jul;18(7):668-678
pubmed: 30936482
J Phys Chem Lett. 2022 Dec 29;13(51):11996-12003
pubmed: 36538766
Science. 2016 Nov 11;354(6313):726-729
pubmed: 27846600
ACS Nano. 2016 Nov 22;10(11):9809-9815
pubmed: 27649370
Acc Chem Res. 2021 Sep 7;54(17):3338-3348
pubmed: 34435769
Phys Rev Lett. 2021 Jan 29;126(4):047402
pubmed: 33576645
J Am Chem Soc. 2008 Apr 23;130(16):5523-9
pubmed: 18373341
Nat Commun. 2019 Mar 5;10(1):1049
pubmed: 30837456
Small. 2019 Jun;15(26):e1804418
pubmed: 30734483
Rep Prog Phys. 2015 Jan;78(1):013901
pubmed: 25536670
Nat Commun. 2021 Nov 19;12(1):6759
pubmed: 34799553
Sci Adv. 2019 Sep 27;5(9):eaau4506
pubmed: 31598548
Nano Lett. 2022 Jul 27;22(14):5859-5865
pubmed: 35793541
Nano Lett. 2014 May 14;14(5):2914-9
pubmed: 24754830
Nano Lett. 2018 Jan 10;18(1):405-411
pubmed: 29166033
ACS Nano. 2017 May 23;11(5):4969-4975
pubmed: 28445644
ACS Nano. 2022 Oct 25;16(10):16924-16931
pubmed: 36065997
ACS Nano. 2020 Aug 25;14(8):10562-10568
pubmed: 32687323
J Phys Chem B. 2007 Sep 20;111(37):11064-74
pubmed: 17718469
Sci Adv. 2022 Jun 24;8(25):eabp9285
pubmed: 35749500
J Am Chem Soc. 2022 Dec 14;144(49):22337-22351
pubmed: 36473154
ACS Photonics. 2018 Apr 18;5(4):1151-1163
pubmed: 30271812
Phys Rev Lett. 2014 Jan 10;112(1):016401
pubmed: 24483911
Chembiochem. 2017 Oct 5;18(19):1873-1885
pubmed: 28714559
ACS Nano. 2021 Sep 28;15(9):14732-14743
pubmed: 34469108
Nature. 2016 Jul 7;535(7610):127-30
pubmed: 27296227
Chem Soc Rev. 2011 Dec;40(12):5636-46
pubmed: 21594298
ACS Photonics. 2022 Aug 17;9(8):2643-2651
pubmed: 35996364
Nat Commun. 2014 Mar 13;5:3448
pubmed: 24622339
Angew Chem Int Ed Engl. 2012 Jan 2;51(1):58-66
pubmed: 22162047
Small. 2016 Oct;12(37):5190-5199
pubmed: 27515573
Nat Commun. 2021 Jun 11;12(1):3570
pubmed: 34117226
Chem Rev. 2019 Nov 27;119(22):11631-11717
pubmed: 31573184
Nat Commun. 2020 Feb 3;11(1):682
pubmed: 32015332
Nat Methods. 2011 Mar;8(3):221-9
pubmed: 21358626
Angew Chem Int Ed Engl. 2018 Mar 5;57(11):2846-2850
pubmed: 29377456