Decreased miR-17-92 cluster correlates with senescence features, disrupted oxidative homeostasis, and impaired therapeutic efficacy of mesenchymal stem cells.

MiR-17-92 cluster acute liver failure adipose tissue-derived mesenchymal stem cells oxidative homeostasis senescence

Journal

American journal of physiology. Cell physiology
ISSN: 1522-1563
Titre abrégé: Am J Physiol Cell Physiol
Pays: United States
ID NLM: 100901225

Informations de publication

Date de publication:
01 08 2023
Historique:
medline: 4 8 2023
pubmed: 27 6 2023
entrez: 27 6 2023
Statut: ppublish

Résumé

Aging and replicative cellular senescence are associated with the reduced therapeutic potential of mesenchymal stem cells (MSCs) on a variety of diseases. This study aimed to determine the mechanism in MSC senescence and further explore a modification strategy to reverse senescence-associated cell dysfunction to improve the therapeutic efficacy of MSCs on acute liver failure (ALF). We found that the adipose tissue-derived MSCs from old mice (oAMSCs) exhibited senescence phenotypes and showed reduced therapeutic efficacy in lipopolysaccharide and D-galactosamine-induced ALF, as shown by the increased hepatic necrosis, liver histology activity index scores, serum liver function indicator levels, and inflammatory cytokine levels. The expression of miR-17-92 cluster members, especially miR-17 and miR-20a, was obviously decreased in oAMSCs and replicatively senescent AMSCs, and was consistent with the decreased oncogene c-Myc level during AMSC senescence and may mediate c-Myc stemness addiction. Further experiments revealed that c-Myc-regulated miR-17-92 expression contributed to increased p21 expression and redox system dysregulation during AMSC senescence. Furthermore, modification of AMSCs with the two key miRNAs in the miR-17-92 cluster mentioned above reversed the senescence features of oAMSCs and restored the therapeutic effect of senescent AMSCs on ALF. In conclusion, the cellular miR-17-92 cluster level is correlated with AMSC senescence and can be used both as an index for evaluating and as a modification target for improving the therapeutic potential of AMSCs.

Identifiants

pubmed: 37366574
doi: 10.1152/ajpcell.00515.2022
doi:

Substances chimiques

MicroRNAs 0

Banques de données

figshare
['10.6084/m9.figshare.23206691']

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

C443-C455

Auteurs

Yelei Cen (Y)

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.

Jinjin Qi (J)

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.

Liang Chen (L)

Thyroid Disease Diagnosis and Treatment Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.

Caixia Xia (C)

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Min Zheng (M)

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.

Yanning Liu (Y)

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.

Guohua Lou (G)

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH