A single-center clinical study of acute kidney injury associated with acute myocardial infarction.
Acute kidney injury
Acute myocardial infarction
Risk factor
miRNAs
Journal
International urology and nephrology
ISSN: 1573-2584
Titre abrégé: Int Urol Nephrol
Pays: Netherlands
ID NLM: 0262521
Informations de publication
Date de publication:
27 Jun 2023
27 Jun 2023
Historique:
received:
10
04
2023
accepted:
14
06
2023
medline:
27
6
2023
pubmed:
27
6
2023
entrez:
27
6
2023
Statut:
aheadofprint
Résumé
To investigate the risk factors of acute kidney injury (AKI) patients with acute myocardial infarction (AMI) and establish potential microRNA (miRNA) biomarkers in the peripheral blood of AMI-AKI patients. Patients hospitalized from 2016 to 2020 and diagnosed with AMI (with AKI or without AKI groups) were recruited. The data of the two groups were compared and the risk factors of AMI-AKI were analyzed by logistic regression. The receiver operator characteristics (ROC) curve was drawn and the predictive value of risk factors in AMI-AKI was evaluated. Six AMI-AKI patients were selected and six healthy subjects were enrolled as the control. The peripheral blood samples of the two groups were collected for miRNA high-throughput sequencing. A total of 300 AMI patients were collected, including 190 patients with AKI and 110 patients without AKI. Multivariate logistic regression analysis indicated that diastolic pressure (68-80 mmHg), urea nitrogen, creatinine, serum uric acid (SUA), aspartate aminotransferase (AST), and left ventricular ejection fraction were the dependent risk factors of AMI-AKI patients (P < 0.05). ROC curve showed that the incidence of AMI-AKI patients was most correlated with urea nitrogen, creatinine, and SUA. In addition, 60 differentially expressed miRNAs were identified between AMI-AKI and controls. Then, hsa-miR-2278, hsa-miR-1827, and hsa-miR-149-5p were more corrected with predictors. Twelve of them targeted 71 genes involved in phagosome, oxytocin signaling pathway, and microRNAs in cancer pathways. Urea nitrogen, creatinine, and SUA were the dependent risk factors and important predictors for AMI-AKI patients. Three miRNAs may be considered as biomarkers for AMI-AKI.
Identifiants
pubmed: 37368084
doi: 10.1007/s11255-023-03676-0
pii: 10.1007/s11255-023-03676-0
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : the National Natural Science Foundation of China
ID : 81860125
Organisme : Natural Science Foundation of Xinjiang
ID : 2017D01C342
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Bruetto RG, Rodrigues FB, Torres US, Otaviano AP, Zanetta DM, Burdmann EA (2012) Renal function at hospital admission and mortality due to acute kidney injury after myocardial infarction. PLoS One 7(4):e35496
doi: 10.1371/journal.pone.0035496
pubmed: 22539974
pmcid: 3335121
Rodrigues FB, Bruetto RG, Torres US, Otaviano AP, Zanetta DM, Burdmann EA (2013) Incidence and mortality of acute kidney injury after myocardial infarction: a comparison between KDIGO and RIFLE criteria. PLoS One 8(7):e69998
doi: 10.1371/journal.pone.0069998
pubmed: 23894572
pmcid: 3720921
Zahler D, Rozenfeld KL, Merdler I, Itach T, Morgan S, Levit D et al (2022) Relation between serum creatine phosphokinase levels and acute kidney injury among ST-segment elevation myocardial infarction patients. J Clin Med. https://doi.org/10.3390/jcm11041137
doi: 10.3390/jcm11041137
pubmed: 36078899
pmcid: 9456499
Shacham Y, Leshem-Rubinow E, Steinvil A, Assa EB, Keren G, Roth A et al (2014) Renal impairment according to acute kidney injury network criteria among ST elevation myocardial infarction patients undergoing primary percutaneous intervention: a retrospective observational study. Clin Res Cardiol 103(7):525–532
doi: 10.1007/s00392-014-0680-8
pubmed: 24522799
Tsai TT, Patel UD, Chang TI, Kennedy KF, Masoudi FA, Matheny ME et al (2014) Contemporary incidence, predictors, and outcomes of acute kidney injury in patients undergoing percutaneous coronary interventions: insights from the NCDR Cath-PCI registry. JACC Cardiovasc Interv 7(1):1–9
doi: 10.1016/j.jcin.2013.06.016
pubmed: 24456715
pmcid: 4122507
Wald R, McArthur E, Adhikari NK, Bagshaw SM, Burns KE, Garg AX et al (2015) Changing incidence and outcomes following dialysis-requiring acute kidney injury among critically ill adults: a population-based cohort study. Am J Kidney Dis 65(6):870–877
doi: 10.1053/j.ajkd.2014.10.017
pubmed: 25533599
Ledeganck KJ, Gielis EM, Abramowicz D, Stenvinkel P, Shiels PG, Van Craenenbroeck AH (2019) MicroRNAs in AKI and Kidney transplantation. Clin J Am Soc Nephrol 14(3):454–468
doi: 10.2215/CJN.08020718
pubmed: 30602462
pmcid: 6419285
Hodgkinson CP, Kang MH, Dal-Pra S, Mirotsou M, Dzau VJ (2015) MicroRNAs and cardiac regeneration. Circ Res 116(10):1700–1711
doi: 10.1161/CIRCRESAHA.116.304377
pubmed: 25953925
pmcid: 4428675
Jones TF, Bekele S, O’Dwyer MJ, Prowle JR (2018) MicroRNAs in acute kidney injury. Nephron 140(2):124–128
doi: 10.1159/000490204
pubmed: 29870986
Guo C, Dong G, Liang X, Dong Z (2019) Epigenetic regulation in AKI and kidney repair: mechanisms and therapeutic implications. Nat Rev Nephrol 15(4):220–239
doi: 10.1038/s41581-018-0103-6
pubmed: 30651611
pmcid: 7866490
Sun T, Dong YH, Du W, Shi CY, Wang K, Tariq MA et al (2017) The role of microRNAs in myocardial infarction: from molecular mechanism to clinical application. Int J Mol Sci. 18(4):745
doi: 10.3390/ijms18040745
pubmed: 28362341
pmcid: 5412330
Liu Y, Feng DJ, Wang LF, Liu LH, Ren ZH, Hao JY et al (2022) The impact of cardiac dysfunction based on killip classification on gastrointestinal bleeding in acute myocardial infarction. Front Med (Lausanne) 9:865663
doi: 10.3389/fmed.2022.865663
pubmed: 35814749
Wiersema R, Jukarainen S, Eck RJ, Kaufmann T, Koeze J, Keus F et al (2020) Different applications of the KDIGO criteria for AKI lead to different incidences in critically ill patients: a post hoc analysis from the prospective observational SICS-II study. Crit Care 24(1):164
doi: 10.1186/s13054-020-02886-7
pubmed: 32316994
pmcid: 7175574
Ugwuowo U, Yamamoto Y, Arora T, Saran I, Partridge C, Biswas A et al (2020) Real-time prediction of acute kidney injury in hospitalized adults: implementation and proof of concept. Am J Kidney Dis 76(6):806–14 e1
doi: 10.1053/j.ajkd.2020.05.003
pubmed: 32505812
pmcid: 8667815
Ejaz AA, Beaver TM, Shimada M, Sood P, Lingegowda V, Schold JD et al (2009) Uric acid: a novel risk factor for acute kidney injury in high-risk cardiac surgery patients? Am J Nephrol 30(5):425–429
doi: 10.1159/000238824
pubmed: 19752530
Lapsia V, Johnson RJ, Dass B, Shimada M, Kambhampati G, Ejaz NI et al (2012) Elevated uric acid increases the risk for acute kidney injury. Am J Med 125(3):302 e9–17
doi: 10.1016/j.amjmed.2011.06.021
pubmed: 22340933
Gaipov A, Solak Y, Turkmen K, Toker A, Baysal AN, Cicekler H et al (2015) Serum uric acid may predict development of progressive acute kidney injury after open heart surgery. Ren Fail 37(1):96–102
doi: 10.3109/0886022X.2014.976130
pubmed: 25347234
Otomo K, Horino T, Miki T, Kataoka H, Hatakeyama Y, Matsumoto T et al (2016) Serum uric acid level as a risk factor for acute kidney injury in hospitalized patients: a retrospective database analysis using the integrated medical information system at Kochi Medical School hospital. Clin Exp Nephrol 20(2):235–243
doi: 10.1007/s10157-015-1156-5
pubmed: 26362441
Grivei A, Giuliani KTK, Wang X, Ungerer J, Francis L, Hepburn K et al (2020) Oxidative stress and inflammasome activation in human rhabdomyolysis-induced acute kidney injury. Free Radic Biol Med 160:690–695
doi: 10.1016/j.freeradbiomed.2020.09.011
pubmed: 32942024
Shimada M, Dass B, Ejaz AA (2011) Paradigm shift in the role of uric acid in acute kidney injury. Semin Nephrol 31(5):453–458
doi: 10.1016/j.semnephrol.2011.08.010
pubmed: 22000653
Ejaz AA, Dass B, Lingegowda V, Shimada M, Beaver TM, Ejaz NI et al (2013) Effect of uric acid lowering therapy on the prevention of acute kidney injury in cardiovascular surgery. Int Urol Nephrol 45(2):449–458
doi: 10.1007/s11255-012-0192-2
pubmed: 22648289
Wilson M, Packington R, Sewell H, Bartle R, McCole E, Kurth MJ et al (2022) Biomarkers during recovery from AKI and prediction of long-term reductions in estimated GFR. Am J Kidney Dis 79(5):646–56 e1
doi: 10.1053/j.ajkd.2021.08.017
pubmed: 34653541
Shao M, Wang S, Parameswaran PK (2017) Hypoalbuminemia: a risk factor for acute kidney injury development and progression to chronic kidney disease in critically ill patients. Int Urol Nephrol 49(2):295–302
doi: 10.1007/s11255-016-1453-2
pubmed: 27817055
Lee EH, Kim HR, Baek SH, Kim KM, Chin JH, Choi DK et al (2014) Risk factors of postoperative acute kidney injury in patients undergoing esophageal cancer surgery. J Cardiothorac Vasc Anesth 28(4):936–942
doi: 10.1053/j.jvca.2013.12.006
pubmed: 24680132
Kim CS, Oak CY, Kim HY, Kang YU, Choi JS, Bae EH et al (2013) Incidence, predictive factors, and clinical outcomes of acute kidney injury after gastric surgery for gastric cancer. PLoS One 8(12):e82289
doi: 10.1371/journal.pone.0082289
pubmed: 24349249
pmcid: 3857284
Sang BH, Bang JY, Song JG, Hwang GS (2015) Hypoalbuminemia within two postoperative days is an independent risk factor for acute kidney injury following living donor liver transplantation: a propensity score analysis of 998 consecutive patients. Crit Care Med 43(12):2552–2561
doi: 10.1097/CCM.0000000000001279
pubmed: 26308436
He H, Cai M, Zhu J, Xiao W, Liu B, Shi Y et al (2018) miR-148a-3p promotes rabbit preadipocyte differentiation by targeting PTEN. In Vitro Cell Dev Biol Anim 54(3):241–249
doi: 10.1007/s11626-018-0232-z
pubmed: 29426973
Zhai C, Li R, Hou K, Chen J, Alzogool M, Hu Y et al (2020) Value of blood-based microRNAs in the diagnosis of acute myocardial infarction: a systematic review and meta-analysis. Front Physiol 11:691
doi: 10.3389/fphys.2020.00691
pubmed: 32922300
pmcid: 7456928
Shihana F, Wong WKM, Joglekar MV, Mohamed F, Gawarammana IB, Isbister GK et al (2021) Urinary microRNAs as non-invasive biomarkers for toxic acute kidney injury in humans. Sci Rep 11(1):9165
doi: 10.1038/s41598-021-87918-0
pubmed: 33911095
pmcid: 8080685
Nolte E, Wach S, Silva IT, Lukat S, Ekici AB, Munkert J et al (2017) A new semisynthetic cardenolide analog 3beta-[2-(1-amantadine)- 1-on-ethylamine]-digitoxigenin (AMANTADIG) affects G2/M cell cycle arrest and miRNA expression profiles and enhances proapoptotic survivin-2B expression in renal cell carcinoma cell lines. Oncotarget 8(7):11676–11691
doi: 10.18632/oncotarget.14644
pubmed: 28099931
pmcid: 5355295
Wang K, Hu YB, Zhao Y, Ye C (2021) Long noncoding RNA ASAP1IT1 suppresses ovarian cancer progression by regulating Hippo/YAP signaling. Int J Mol Med. https://doi.org/10.3892/ijmm.2021.4877
doi: 10.3892/ijmm.2021.4877
pubmed: 34935058
pmcid: 8711589
Zhu S, Peng W, Li X, Weng J, Zhang X, Guo J et al (2017) miR-1827 inhibits osteogenic differentiation by targeting IGF1 in MSMSCs. Sci Rep 7:46136
doi: 10.1038/srep46136
pubmed: 28387248
pmcid: 5384002
Zhou Z, Zheng X, Mei X, Li W, Qi S, Deng Y et al (2021) Hsa_circ_0080229 upregulates the expression of murine double minute-2 (MDM2) and promotes glioma tumorigenesis and invasion via the miR-1827 sponging mechanism. Ann Transl Med 9(9):762
doi: 10.21037/atm-20-7123
pubmed: 34268375
pmcid: 8246201
Wang J, Yang K, Cao J, Li L (2021) Knockdown of circular RNA septin 9 inhibits the malignant progression of breast cancer by reducing the expression of solute carrier family 1 member 5 in a microRNA-149-5p-dependent manner. Bioengineered 12(2):10624–10637
doi: 10.1080/21655979.2021.2000731
pubmed: 34738502
pmcid: 8809977
Liu G, Yin L, Ouyang X, Zeng K, Xiao Y, Li Y (2020) M2 macrophages promote HCC cells invasion and migration via miR-149-5p/MMP9 signaling. J Cancer 11(5):1277–1287
doi: 10.7150/jca.35444
pubmed: 31956374
pmcid: 6959084
Ruan D, Liu Y, Wang X, Yang D, Sun Y (2019) miR-149-5p protects against high glucose-induced pancreatic beta cell apoptosis via targeting the BH3-only protein BIM. Exp Mol Pathol 110:104279
doi: 10.1016/j.yexmp.2019.104279
pubmed: 31260649
Chen F, Chen H, Jia Y, Lu H, Tan Q, Zhou X (2020) miR-149-5p inhibition reduces Alzheimer’s disease beta-amyloid generation in 293/APPsw cells by upregulating H4K16ac via KAT8. Exp Ther Med 20(5):88
doi: 10.3892/etm.2020.9216
pubmed: 32973937
pmcid: 7507054
Breyer F, Hartlova A, Thurston T, Flynn HR, Chakravarty P, Janzen J et al (2021) TPL-2 kinase induces phagosome acidification to promote macrophage killing of bacteria. EMBO J 40(10):e106188
doi: 10.15252/embj.2020106188
pubmed: 33881780
pmcid: 8126920
Ding C, Leow MK, Magkos F (2019) Oxytocin in metabolic homeostasis: implications for obesity and diabetes management. Obes Rev 20(1):22–40
doi: 10.1111/obr.12757
pubmed: 30253045
Elnagar A, El-Dawy K, El-Belbasi HI, Rehan IF, Embark H, Al-Amgad Z et al (2022) Ameliorative effect of oxytocin on FBN1 and PEPCK gene expression, and behavioral patterns in rats’ obesity-induced diabetes. Front Public Health 10:777129
doi: 10.3389/fpubh.2022.777129
pubmed: 35462799
pmcid: 9021505
Phie J, Haleagrahara N, Newton P, Constantinoiu C, Sarnyai Z, Chilton L et al (2015) Prolonged subcutaneous administration of oxytocin accelerates angiotensin II-induced hypertension and renal damage in male rats. PLoS One 10(9):e0138048
doi: 10.1371/journal.pone.0138048
pubmed: 26393919
pmcid: 4579129