Monitoring Salivary Concentrations of Tedizolid and Linezolid Using Rats.
Journal
European journal of drug metabolism and pharmacokinetics
ISSN: 2107-0180
Titre abrégé: Eur J Drug Metab Pharmacokinet
Pays: France
ID NLM: 7608491
Informations de publication
Date de publication:
Jul 2023
Jul 2023
Historique:
accepted:
25
05
2023
medline:
7
7
2023
pubmed:
27
6
2023
entrez:
27
6
2023
Statut:
ppublish
Résumé
Therapeutic drug monitoring (TDM) is an effective tool for the management of patients who are administered linezolid. The use of saliva for TDM has potential advantages over the use of plasma; however, only a few reports have compared drug concentrations in the saliva and plasma. Moreover, there are no reports on the salivary concentration of tedizolid, an oxazolidinone antibiotic similar to linezolid. In the present study, the concentrations of tedizolid and linezolid in rat submandibular saliva were compared with those measured in the plasma. Tedizolid (10 mg/kg, n = 6) and linezolid (12 mg/kg, n = 5) were administered via the rat tail vein. Submandibular saliva and plasma samples were collected for up to 8 h after the initiation of drug administration, and assayed for the concentrations of tedizolid and linezolid. A strong correlation was found between the saliva and plasma concentrations of tedizolid (r = 0.964, p < 0.001) and linezolid (r = 0.936, p < 0.001). The value of tedizolid maximum concentration of drug (C Considering the correlation between saliva and plasma concentrations of tedizolid and linezolid, as well as the characteristics of saliva, the results of this study suggest that saliva is a useful matrix for TDM.
Sections du résumé
BACKGROUND AND OBJECTIVE
OBJECTIVE
Therapeutic drug monitoring (TDM) is an effective tool for the management of patients who are administered linezolid. The use of saliva for TDM has potential advantages over the use of plasma; however, only a few reports have compared drug concentrations in the saliva and plasma. Moreover, there are no reports on the salivary concentration of tedizolid, an oxazolidinone antibiotic similar to linezolid. In the present study, the concentrations of tedizolid and linezolid in rat submandibular saliva were compared with those measured in the plasma.
METHODS
METHODS
Tedizolid (10 mg/kg, n = 6) and linezolid (12 mg/kg, n = 5) were administered via the rat tail vein. Submandibular saliva and plasma samples were collected for up to 8 h after the initiation of drug administration, and assayed for the concentrations of tedizolid and linezolid.
RESULTS
RESULTS
A strong correlation was found between the saliva and plasma concentrations of tedizolid (r = 0.964, p < 0.001) and linezolid (r = 0.936, p < 0.001). The value of tedizolid maximum concentration of drug (C
CONCLUSIONS
CONCLUSIONS
Considering the correlation between saliva and plasma concentrations of tedizolid and linezolid, as well as the characteristics of saliva, the results of this study suggest that saliva is a useful matrix for TDM.
Identifiants
pubmed: 37368188
doi: 10.1007/s13318-023-00836-6
pii: 10.1007/s13318-023-00836-6
doi:
Substances chimiques
Linezolid
ISQ9I6J12J
tedizolid
97HLQ82NGL
Oxazolidinones
0
Anti-Bacterial Agents
0
Tetrazoles
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
387-395Subventions
Organisme : Kaken Pharmaceutical
ID : 21K06684
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Hashemian SMR, Farhadi T, Ganjparvar M. Linezolid: a review of its properties, function, and use in critical care. Drug Des Devel Ther. 2018;12:1759–67. https://doi.org/10.2147/DDDT.S164515 .
doi: 10.2147/DDDT.S164515
pubmed: 29950810
pmcid: 6014438
Kutscha-Lissberg F, Hebler U, Muhr G, Köller M. Linezolid penetration into bone and joint tissues infected with methicillin-resistant staphylococci. Antimicrob Agents Chemother. 2003;47(12):3964–6. https://doi.org/10.1128/AAC.47.12.3964-3966.2003 .
doi: 10.1128/AAC.47.12.3964-3966.2003
pubmed: 14638510
pmcid: 296177
Kawasuji H, Tsuji Y, Ogami C, Kaneda M, Murai Y, Kimoto K, et al. Initially reduced linezolid dosing regimen to prevent thrombocytopenia in hemodialysis patients. Antibiotics (Basel). 2021;10(5):496. https://doi.org/10.3390/antibiotics10050496 .
doi: 10.3390/antibiotics10050496
pubmed: 33925912
pmcid: 8147032
Shi C, Xia J, Ye J, Xie Y, Jin W, Zhang W, et al. Effect of renal function on the risk of thrombocytopaenia in patients receiving linezolid therapy: a systematic review and meta-analysis. Br J Clin Pharmacol. 2022;88(2):464–75. https://doi.org/10.1111/bcp.14965 .
doi: 10.1111/bcp.14965
pubmed: 34192814
Inoue Y, Takekuma Y, Miyai T, Kashiwagi H, Sato Y, Sugawara M, et al. Use of Japanese big data from electronic medical records to investigate risk factors and identify their high-risk combinations for linezolid-induced thrombocytopenia. Eur J Clin Pharmacol. 2023;79(3):415–25. https://doi.org/10.1007/s00228-023-03455-x.Advanceonlinepublication .
doi: 10.1007/s00228-023-03455-x.Advanceonlinepublication
pubmed: 36715711
Ferry T, Batailler C, Conrad A, Triffault-Fillit C, Laurent F, Valour F, et al. Correction of linezolid-induced myelotoxicity after switch to tedizolid in a patient requiring suppressive antimicrobial therapy for multidrug-resistant Staphylococcus epidermidis prosthetic-joint infection. Open Forum Infect Dis. 2018. https://doi.org/10.1093/ofid/ofy246 .
doi: 10.1093/ofid/ofy246
pubmed: 30474047
pmcid: 6252675
Hall RG 2nd, Michaels HN. Profile of tedizolid phosphate and its potential in the treatment of acute bacterial skin and skin structure infections. Infect Drug Resist. 2015;8:75–82. https://doi.org/10.2147/IDR.S56691 .
doi: 10.2147/IDR.S56691
pubmed: 25960671
pmcid: 4411017
Cattaneo D, Gervasoni C, Cozzi V, Castoldi S, Baldelli S, Clementi E. Therapeutic drug management of linezolid: a missed opportunity for clinicians? Int J Antimicrob Agents. 2016;48(6):728–31. https://doi.org/10.1016/j.ijantimicag.2016.08.023 .
doi: 10.1016/j.ijantimicag.2016.08.023
pubmed: 27769709
Pea F, Viale P, Cojutti P, Del Pin B, Zamparini E, Furlanut M. Therapeutic drug monitoring may improve safety outcomes of long-term treatment with linezolid in adult patients. J Antimicrob Chemother. 2012;67(8):2034–42. https://doi.org/10.1093/jac/dks153 .
doi: 10.1093/jac/dks153
pubmed: 22553142
Rao GG, Konicki R, Cattaneo D, Alffenaar JW, Marriott DJE, Neely M, Iatdmct Antimicrobial Scientific Committee. Therapeutic drug monitoring can improve linezolid dosing regimens in current clinical practice A review of linezolid pharmacokinetics and pharmacodynamics. Ther Drug Monit 42 (1) 83-92
Burdette SD, Trotman R. Tedizolid: the first once-daily oxazolidinone class antibiotic. Clin Infect Dis. 2015;61(8):1315–21. https://doi.org/10.1093/cid/civ501 .
doi: 10.1093/cid/civ501
pubmed: 26105167
Ong V, Flanagan S, Fang E, Dreskin HJ, Locke JB, Bartizal K, et al. Absorption, distribution, metabolism, and excretion of the novel antibacterial prodrug tedizolid phosphate. Drug Metab Dispos. 2014;42(8):1275–84. https://doi.org/10.1124/dmd.113.056697 .
doi: 10.1124/dmd.113.056697
pubmed: 24875463
Gentry-Nielsen MJ, Olsen KM, Preheim LC. Pharmacodynamic activity and efficacy of linezolid in a rat model of pneumococcal pneumonia. Antimicrob Agents Chemother. 2002;46(5):1345–51. https://doi.org/10.1128/AAC.46.5.1345-1351.2002 .
doi: 10.1128/AAC.46.5.1345-1351.2002
pubmed: 11959567
pmcid: 127197
Capiau S, Veenhof H, Koster RA, Bergqvist Y, Boettcher M, Halmingh O, et al. Official international association for therapeutic drug monitoring and clinical toxicology guideline: development and validation of dried blood spot-based methods for therapeutic drug monitoring. Ther Drug Monit. 2019;41(4):409–30. https://doi.org/10.1097/FTD.0000000000000643 .
doi: 10.1097/FTD.0000000000000643
pubmed: 31268966
Idkaidek N, Arafat T. Saliva versus plasma pharmacokinetics: theory and application of a salivary excretion classification system. Mol Pharm. 2012;9(8):2358–63. https://doi.org/10.1021/mp300250r .
doi: 10.1021/mp300250r
pubmed: 22784220
Zyvox
Hara S, Uchiyama M, Yoshinari M, Matsumoto T, Jimi S, Togawa A, et al. A simple high-performance liquid chromatography for the determination of linezolid in human plasma and saliva. Biomed Chromatogr. 2015;29(9):1428–31. https://doi.org/10.1002/bmc.3441 .
doi: 10.1002/bmc.3441
pubmed: 25678451
Dai Y, Jiang S, Chen X, Han L, Zhang C, Yu X, et al. Analysis of the risk factors of linezolid-related haematological toxicity in Chinese patients. J Clin Pharm Ther. 2021;46(3):807–13. https://doi.org/10.1111/jcpt.13359 .
doi: 10.1111/jcpt.13359
pubmed: 33555057
Nashida T, Sato R, Imai A, Shimomura H. Gene expression profiles of the three major salivary glands in rats. Biomed Res. 2010;31(6):387–99. https://doi.org/10.2220/biomedres.31.387 .
doi: 10.2220/biomedres.31.387
pubmed: 21187650
Nezu A, Morita T, Nagai T, Tanimura A. Simultaneous monitoring of Ca
doi: 10.1113/EP086868
pubmed: 30367746
Xu S, Li C, Zhou H, Yu L, Deng L, Zhu J, et al. A study on acetylglutamine pharmacokinetics in rat blood and brain based on liquid chromatography-tandem mass spectrometry and microdialysis technique. Front Pharmacol. 2020;11:508. https://doi.org/10.3389/fphar.2020.00508 .
doi: 10.3389/fphar.2020.00508
pubmed: 32425776
pmcid: 7203552
Yan J, He X, Feng S, Zhai Y, Ma Y, Liang S, et al. Up-regulation on cytochromes P450 in rat mediated by total alkaloid extract from Corydalis yanhusuo. BMC Complement Altern Med. 2014;14:306. https://doi.org/10.1186/1472-6882-14-306 .
doi: 10.1186/1472-6882-14-306
pubmed: 25134417
pmcid: 4150957
The Japanese Pharmacopoeia 18th edition, general notices (Official from June 7, 2021).
Parkin GM, McCarthy MJ, Thein SH, Piccerillo HL, Warikoo N, Granger DA, et al. Saliva testing as a means to monitor therapeutic lithium levels in patients with psychiatric disorders: Identification of clinical and environmental covariates, and their incorporation into a prediction model. Bipolar Disord. 2021;23(7):679–88. https://doi.org/10.1111/bdi.13128 .
doi: 10.1111/bdi.13128
pubmed: 34536974
pmcid: 9291088
Greenaway C, Ratnaraj N, Sander JW, Patsalos PN. Saliva and serum lacosamide concentrations in patients with epilepsy. Epilepsia. 2011;52(2):258–63. https://doi.org/10.1111/j.1528-1167.2010.02751.x .
doi: 10.1111/j.1528-1167.2010.02751.x
pubmed: 20946125
Liu H, Delgado MR. Therapeutic drug concentration monitoring using saliva samples. Focus on anticonvulsants Clin Pharmacokinet. 1999;36(6):453–70. https://doi.org/10.2165/00003088-199936060-00006 .
doi: 10.2165/00003088-199936060-00006
pubmed: 10427469
Kim DY, Moon J, Shin YW, Lee ST, Jung KH, Park KI, et al. Usefulness of saliva for perampanel therapeutic drug monitoring. Epilepsia. 2020;61(6):1120–8. https://doi.org/10.1111/epi.16513 .
doi: 10.1111/epi.16513
pubmed: 32378757
Bolhuis MS, van Altena R, van Hateren K, de Lange WC, Greijdanus B, Uges DR, et al. Clinical validation of the analysis of linezolid and clarithromycin in oral fluid of patients with multidrug-resistant tuberculosis. Antimicrob Agents Chemother. 2013;57(8):3676–80. https://doi.org/10.1128/AAC.00558-13 .
doi: 10.1128/AAC.00558-13
pubmed: 23689722
pmcid: 3719718
Choo RE, Huestis MA. Oral fluid as a diagnostic tool. Clin Chem Lab Med. 2004;42(11):1273–87. https://doi.org/10.1515/CCLM.2004.248 .
doi: 10.1515/CCLM.2004.248
pubmed: 15576290
Taylor R, Sunderland B, Luna G, Czarniak P. Evaluation of the stability of linezolid in aqueous solution and commonly used intravenous fluids. Drug Des Devel Ther. 2017;11:2087–97. https://doi.org/10.2147/DDDT.S136335 .
doi: 10.2147/DDDT.S136335
pubmed: 28744100
pmcid: 5513848
Humphrey SP, Williamson RT. A review of saliva: normal composition, flow, and function. J Prosthet Dent. 2001;85(2):162–9. https://doi.org/10.1067/mpr.2001.113778 .
doi: 10.1067/mpr.2001.113778
pubmed: 11208206
Tatevossian A, Wright WG. The collection and analysis of resting rat saliva. Arch Oral Biol. 1974;19(9):825–7. https://doi.org/10.1016/0003-9969(74)90173-3 .
doi: 10.1016/0003-9969(74)90173-3
pubmed: 4533733
Langman LJ. The use of oral fluid for therapeutic drug management: clinical and forensic toxicology. Ann N Y Acad Sci. 2007;1098:145–66. https://doi.org/10.1196/annals.1384.001 .
doi: 10.1196/annals.1384.001
pubmed: 17332075
Lamy E, Graça G, da Costa G, Franco C, E Silva FC, Baptista ES, et al. Changes in mouse whole saliva soluble proteome induced by tannin-enriched diet. Proteome Sci. 2010;8:65. https://doi.org/10.1186/1477-5956-8-65 .
Louro T, Simões C, Lima W, Carreira L, Castelo PM, Luis H, et al. Salivary Protein Profile and Food Intake: A Dietary Pattern Analysis. J Nutr Metab. 2021;2021:6629951. https://doi.org/10.1155/2021/6629951 .
doi: 10.1155/2021/6629951
pubmed: 33953975
pmcid: 8064783
Takahashi Y, Takesue Y, Nakajima K, Ichiki K, Tsuchida T, Tatsumi S, et al. Risk factors associated with the development of thrombocytopenia in patients who received linezolid therapy. J Infect Chemother. 2011;17(3):382–7. https://doi.org/10.1007/s10156-010-0182-1 .
doi: 10.1007/s10156-010-0182-1
pubmed: 21127934
Nukui Y, Hatakeyama S, Okamoto K, Yamamoto T, Hisaka A, Suzuki H, et al. High plasma linezolid concentration and impaired renal function affect development of linezolid-induced thrombocytopenia. J Antimicrob Chemother. 2013;68(9):2128–33. https://doi.org/10.1093/jac/dkt133 .
doi: 10.1093/jac/dkt133
pubmed: 23625638
Niwa T, Suzuki A, Sakakibara S, Kasahara S, Yasuda M, Fukao A, et al. Retrospective cohort chart review study of factors associated with the development of thrombocytopenia in adult Japanese patients who received intravenous linezolid therapy. Clin Ther. 2009;31(10):2126–33. https://doi.org/10.1016/j.clinthera.2009.10.017 .
doi: 10.1016/j.clinthera.2009.10.017
pubmed: 19922883
Daisho T, Kagami K, Yamazaki K, Ishiguro N, Endo T, Takahata M, et al. Therapeutic drug monitoring-enabled long-term use of linezolid for the successful treatment of refractory pyogenic spondylodiscitis without development of thrombocytopenia: A case report. J Orthop Sci. 2021;S0949–2658(21):384–5. https://doi.org/10.1016/j.jos.2021.11.018 .
doi: 10.1016/j.jos.2021.11.018
Yahya M, Saghir MZ. Empirical modelling to predict the refractive index of human blood. Phys Med Biol. 2016;61(4):1405–15. https://doi.org/10.1088/0031-9155/61/4/1405 .
doi: 10.1088/0031-9155/61/4/1405
pubmed: 26807785
Roblegg E, Coughran A, Sirjani D. Saliva: An all-rounder of our body. Eur J Pharm Biopharm. 2019;142:133–41. https://doi.org/10.1016/j.ejpb.2019.06.016 .
doi: 10.1016/j.ejpb.2019.06.016
pubmed: 31220573