Monitoring Salivary Concentrations of Tedizolid and Linezolid Using Rats.


Journal

European journal of drug metabolism and pharmacokinetics
ISSN: 2107-0180
Titre abrégé: Eur J Drug Metab Pharmacokinet
Pays: France
ID NLM: 7608491

Informations de publication

Date de publication:
Jul 2023
Historique:
accepted: 25 05 2023
medline: 7 7 2023
pubmed: 27 6 2023
entrez: 27 6 2023
Statut: ppublish

Résumé

Therapeutic drug monitoring (TDM) is an effective tool for the management of patients who are administered linezolid. The use of saliva for TDM has potential advantages over the use of plasma; however, only a few reports have compared drug concentrations in the saliva and plasma. Moreover, there are no reports on the salivary concentration of tedizolid, an oxazolidinone antibiotic similar to linezolid. In the present study, the concentrations of tedizolid and linezolid in rat submandibular saliva were compared with those measured in the plasma. Tedizolid (10 mg/kg, n = 6) and linezolid (12 mg/kg, n = 5) were administered via the rat tail vein. Submandibular saliva and plasma samples were collected for up to 8 h after the initiation of drug administration, and assayed for the concentrations of tedizolid and linezolid. A strong correlation was found between the saliva and plasma concentrations of tedizolid (r = 0.964, p < 0.001) and linezolid (r = 0.936, p < 0.001). The value of tedizolid maximum concentration of drug (C Considering the correlation between saliva and plasma concentrations of tedizolid and linezolid, as well as the characteristics of saliva, the results of this study suggest that saliva is a useful matrix for TDM.

Sections du résumé

BACKGROUND AND OBJECTIVE OBJECTIVE
Therapeutic drug monitoring (TDM) is an effective tool for the management of patients who are administered linezolid. The use of saliva for TDM has potential advantages over the use of plasma; however, only a few reports have compared drug concentrations in the saliva and plasma. Moreover, there are no reports on the salivary concentration of tedizolid, an oxazolidinone antibiotic similar to linezolid. In the present study, the concentrations of tedizolid and linezolid in rat submandibular saliva were compared with those measured in the plasma.
METHODS METHODS
Tedizolid (10 mg/kg, n = 6) and linezolid (12 mg/kg, n = 5) were administered via the rat tail vein. Submandibular saliva and plasma samples were collected for up to 8 h after the initiation of drug administration, and assayed for the concentrations of tedizolid and linezolid.
RESULTS RESULTS
A strong correlation was found between the saliva and plasma concentrations of tedizolid (r = 0.964, p < 0.001) and linezolid (r = 0.936, p < 0.001). The value of tedizolid maximum concentration of drug (C
CONCLUSIONS CONCLUSIONS
Considering the correlation between saliva and plasma concentrations of tedizolid and linezolid, as well as the characteristics of saliva, the results of this study suggest that saliva is a useful matrix for TDM.

Identifiants

pubmed: 37368188
doi: 10.1007/s13318-023-00836-6
pii: 10.1007/s13318-023-00836-6
doi:

Substances chimiques

Linezolid ISQ9I6J12J
tedizolid 97HLQ82NGL
Oxazolidinones 0
Anti-Bacterial Agents 0
Tetrazoles 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

387-395

Subventions

Organisme : Kaken Pharmaceutical
ID : 21K06684

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

Hashemian SMR, Farhadi T, Ganjparvar M. Linezolid: a review of its properties, function, and use in critical care. Drug Des Devel Ther. 2018;12:1759–67. https://doi.org/10.2147/DDDT.S164515 .
doi: 10.2147/DDDT.S164515 pubmed: 29950810 pmcid: 6014438
Kutscha-Lissberg F, Hebler U, Muhr G, Köller M. Linezolid penetration into bone and joint tissues infected with methicillin-resistant staphylococci. Antimicrob Agents Chemother. 2003;47(12):3964–6. https://doi.org/10.1128/AAC.47.12.3964-3966.2003 .
doi: 10.1128/AAC.47.12.3964-3966.2003 pubmed: 14638510 pmcid: 296177
Kawasuji H, Tsuji Y, Ogami C, Kaneda M, Murai Y, Kimoto K, et al. Initially reduced linezolid dosing regimen to prevent thrombocytopenia in hemodialysis patients. Antibiotics (Basel). 2021;10(5):496. https://doi.org/10.3390/antibiotics10050496 .
doi: 10.3390/antibiotics10050496 pubmed: 33925912 pmcid: 8147032
Shi C, Xia J, Ye J, Xie Y, Jin W, Zhang W, et al. Effect of renal function on the risk of thrombocytopaenia in patients receiving linezolid therapy: a systematic review and meta-analysis. Br J Clin Pharmacol. 2022;88(2):464–75. https://doi.org/10.1111/bcp.14965 .
doi: 10.1111/bcp.14965 pubmed: 34192814
Inoue Y, Takekuma Y, Miyai T, Kashiwagi H, Sato Y, Sugawara M, et al. Use of Japanese big data from electronic medical records to investigate risk factors and identify their high-risk combinations for linezolid-induced thrombocytopenia. Eur J Clin Pharmacol. 2023;79(3):415–25. https://doi.org/10.1007/s00228-023-03455-x.Advanceonlinepublication .
doi: 10.1007/s00228-023-03455-x.Advanceonlinepublication pubmed: 36715711
Ferry T, Batailler C, Conrad A, Triffault-Fillit C, Laurent F, Valour F, et al. Correction of linezolid-induced myelotoxicity after switch to tedizolid in a patient requiring suppressive antimicrobial therapy for multidrug-resistant Staphylococcus epidermidis prosthetic-joint infection. Open Forum Infect Dis. 2018. https://doi.org/10.1093/ofid/ofy246 .
doi: 10.1093/ofid/ofy246 pubmed: 30474047 pmcid: 6252675
Hall RG 2nd, Michaels HN. Profile of tedizolid phosphate and its potential in the treatment of acute bacterial skin and skin structure infections. Infect Drug Resist. 2015;8:75–82. https://doi.org/10.2147/IDR.S56691 .
doi: 10.2147/IDR.S56691 pubmed: 25960671 pmcid: 4411017
Cattaneo D, Gervasoni C, Cozzi V, Castoldi S, Baldelli S, Clementi E. Therapeutic drug management of linezolid: a missed opportunity for clinicians? Int J Antimicrob Agents. 2016;48(6):728–31. https://doi.org/10.1016/j.ijantimicag.2016.08.023 .
doi: 10.1016/j.ijantimicag.2016.08.023 pubmed: 27769709
Pea F, Viale P, Cojutti P, Del Pin B, Zamparini E, Furlanut M. Therapeutic drug monitoring may improve safety outcomes of long-term treatment with linezolid in adult patients. J Antimicrob Chemother. 2012;67(8):2034–42. https://doi.org/10.1093/jac/dks153 .
doi: 10.1093/jac/dks153 pubmed: 22553142
Rao GG, Konicki R, Cattaneo D, Alffenaar JW, Marriott DJE, Neely M, Iatdmct Antimicrobial Scientific Committee. Therapeutic drug monitoring can improve linezolid dosing regimens in current clinical practice A review of linezolid pharmacokinetics and pharmacodynamics. Ther Drug Monit 42 (1) 83-92
Burdette SD, Trotman R. Tedizolid: the first once-daily oxazolidinone class antibiotic. Clin Infect Dis. 2015;61(8):1315–21. https://doi.org/10.1093/cid/civ501 .
doi: 10.1093/cid/civ501 pubmed: 26105167
Ong V, Flanagan S, Fang E, Dreskin HJ, Locke JB, Bartizal K, et al. Absorption, distribution, metabolism, and excretion of the novel antibacterial prodrug tedizolid phosphate. Drug Metab Dispos. 2014;42(8):1275–84. https://doi.org/10.1124/dmd.113.056697 .
doi: 10.1124/dmd.113.056697 pubmed: 24875463
Gentry-Nielsen MJ, Olsen KM, Preheim LC. Pharmacodynamic activity and efficacy of linezolid in a rat model of pneumococcal pneumonia. Antimicrob Agents Chemother. 2002;46(5):1345–51. https://doi.org/10.1128/AAC.46.5.1345-1351.2002 .
doi: 10.1128/AAC.46.5.1345-1351.2002 pubmed: 11959567 pmcid: 127197
Capiau S, Veenhof H, Koster RA, Bergqvist Y, Boettcher M, Halmingh O, et al. Official international association for therapeutic drug monitoring and clinical toxicology guideline: development and validation of dried blood spot-based methods for therapeutic drug monitoring. Ther Drug Monit. 2019;41(4):409–30. https://doi.org/10.1097/FTD.0000000000000643 .
doi: 10.1097/FTD.0000000000000643 pubmed: 31268966
Idkaidek N, Arafat T. Saliva versus plasma pharmacokinetics: theory and application of a salivary excretion classification system. Mol Pharm. 2012;9(8):2358–63. https://doi.org/10.1021/mp300250r .
doi: 10.1021/mp300250r pubmed: 22784220
Zyvox
Hara S, Uchiyama M, Yoshinari M, Matsumoto T, Jimi S, Togawa A, et al. A simple high-performance liquid chromatography for the determination of linezolid in human plasma and saliva. Biomed Chromatogr. 2015;29(9):1428–31. https://doi.org/10.1002/bmc.3441 .
doi: 10.1002/bmc.3441 pubmed: 25678451
Dai Y, Jiang S, Chen X, Han L, Zhang C, Yu X, et al. Analysis of the risk factors of linezolid-related haematological toxicity in Chinese patients. J Clin Pharm Ther. 2021;46(3):807–13. https://doi.org/10.1111/jcpt.13359 .
doi: 10.1111/jcpt.13359 pubmed: 33555057
Nashida T, Sato R, Imai A, Shimomura H. Gene expression profiles of the three major salivary glands in rats. Biomed Res. 2010;31(6):387–99. https://doi.org/10.2220/biomedres.31.387 .
doi: 10.2220/biomedres.31.387 pubmed: 21187650
Nezu A, Morita T, Nagai T, Tanimura A. Simultaneous monitoring of Ca
doi: 10.1113/EP086868 pubmed: 30367746
Xu S, Li C, Zhou H, Yu L, Deng L, Zhu J, et al. A study on acetylglutamine pharmacokinetics in rat blood and brain based on liquid chromatography-tandem mass spectrometry and microdialysis technique. Front Pharmacol. 2020;11:508. https://doi.org/10.3389/fphar.2020.00508 .
doi: 10.3389/fphar.2020.00508 pubmed: 32425776 pmcid: 7203552
Yan J, He X, Feng S, Zhai Y, Ma Y, Liang S, et al. Up-regulation on cytochromes P450 in rat mediated by total alkaloid extract from Corydalis yanhusuo. BMC Complement Altern Med. 2014;14:306. https://doi.org/10.1186/1472-6882-14-306 .
doi: 10.1186/1472-6882-14-306 pubmed: 25134417 pmcid: 4150957
The Japanese Pharmacopoeia 18th edition, general notices (Official from June 7, 2021).
Parkin GM, McCarthy MJ, Thein SH, Piccerillo HL, Warikoo N, Granger DA, et al. Saliva testing as a means to monitor therapeutic lithium levels in patients with psychiatric disorders: Identification of clinical and environmental covariates, and their incorporation into a prediction model. Bipolar Disord. 2021;23(7):679–88. https://doi.org/10.1111/bdi.13128 .
doi: 10.1111/bdi.13128 pubmed: 34536974 pmcid: 9291088
Greenaway C, Ratnaraj N, Sander JW, Patsalos PN. Saliva and serum lacosamide concentrations in patients with epilepsy. Epilepsia. 2011;52(2):258–63. https://doi.org/10.1111/j.1528-1167.2010.02751.x .
doi: 10.1111/j.1528-1167.2010.02751.x pubmed: 20946125
Liu H, Delgado MR. Therapeutic drug concentration monitoring using saliva samples. Focus on anticonvulsants Clin Pharmacokinet. 1999;36(6):453–70. https://doi.org/10.2165/00003088-199936060-00006 .
doi: 10.2165/00003088-199936060-00006 pubmed: 10427469
Kim DY, Moon J, Shin YW, Lee ST, Jung KH, Park KI, et al. Usefulness of saliva for perampanel therapeutic drug monitoring. Epilepsia. 2020;61(6):1120–8. https://doi.org/10.1111/epi.16513 .
doi: 10.1111/epi.16513 pubmed: 32378757
Bolhuis MS, van Altena R, van Hateren K, de Lange WC, Greijdanus B, Uges DR, et al. Clinical validation of the analysis of linezolid and clarithromycin in oral fluid of patients with multidrug-resistant tuberculosis. Antimicrob Agents Chemother. 2013;57(8):3676–80. https://doi.org/10.1128/AAC.00558-13 .
doi: 10.1128/AAC.00558-13 pubmed: 23689722 pmcid: 3719718
Choo RE, Huestis MA. Oral fluid as a diagnostic tool. Clin Chem Lab Med. 2004;42(11):1273–87. https://doi.org/10.1515/CCLM.2004.248 .
doi: 10.1515/CCLM.2004.248 pubmed: 15576290
Taylor R, Sunderland B, Luna G, Czarniak P. Evaluation of the stability of linezolid in aqueous solution and commonly used intravenous fluids. Drug Des Devel Ther. 2017;11:2087–97. https://doi.org/10.2147/DDDT.S136335 .
doi: 10.2147/DDDT.S136335 pubmed: 28744100 pmcid: 5513848
Humphrey SP, Williamson RT. A review of saliva: normal composition, flow, and function. J Prosthet Dent. 2001;85(2):162–9. https://doi.org/10.1067/mpr.2001.113778 .
doi: 10.1067/mpr.2001.113778 pubmed: 11208206
Tatevossian A, Wright WG. The collection and analysis of resting rat saliva. Arch Oral Biol. 1974;19(9):825–7. https://doi.org/10.1016/0003-9969(74)90173-3 .
doi: 10.1016/0003-9969(74)90173-3 pubmed: 4533733
Langman LJ. The use of oral fluid for therapeutic drug management: clinical and forensic toxicology. Ann N Y Acad Sci. 2007;1098:145–66. https://doi.org/10.1196/annals.1384.001 .
doi: 10.1196/annals.1384.001 pubmed: 17332075
Lamy E, Graça G, da Costa G, Franco C, E Silva FC, Baptista ES, et al. Changes in mouse whole saliva soluble proteome induced by tannin-enriched diet. Proteome Sci. 2010;8:65. https://doi.org/10.1186/1477-5956-8-65 .
Louro T, Simões C, Lima W, Carreira L, Castelo PM, Luis H, et al. Salivary Protein Profile and Food Intake: A Dietary Pattern Analysis. J Nutr Metab. 2021;2021:6629951.  https://doi.org/10.1155/2021/6629951 .
doi: 10.1155/2021/6629951 pubmed: 33953975 pmcid: 8064783
Takahashi Y, Takesue Y, Nakajima K, Ichiki K, Tsuchida T, Tatsumi S, et al. Risk factors associated with the development of thrombocytopenia in patients who received linezolid therapy. J Infect Chemother. 2011;17(3):382–7. https://doi.org/10.1007/s10156-010-0182-1 .
doi: 10.1007/s10156-010-0182-1 pubmed: 21127934
Nukui Y, Hatakeyama S, Okamoto K, Yamamoto T, Hisaka A, Suzuki H, et al. High plasma linezolid concentration and impaired renal function affect development of linezolid-induced thrombocytopenia. J Antimicrob Chemother. 2013;68(9):2128–33. https://doi.org/10.1093/jac/dkt133 .
doi: 10.1093/jac/dkt133 pubmed: 23625638
Niwa T, Suzuki A, Sakakibara S, Kasahara S, Yasuda M, Fukao A, et al. Retrospective cohort chart review study of factors associated with the development of thrombocytopenia in adult Japanese patients who received intravenous linezolid therapy. Clin Ther. 2009;31(10):2126–33. https://doi.org/10.1016/j.clinthera.2009.10.017 .
doi: 10.1016/j.clinthera.2009.10.017 pubmed: 19922883
Daisho T, Kagami K, Yamazaki K, Ishiguro N, Endo T, Takahata M, et al. Therapeutic drug monitoring-enabled long-term use of linezolid for the successful treatment of refractory pyogenic spondylodiscitis without development of thrombocytopenia: A case report. J Orthop Sci. 2021;S0949–2658(21):384–5. https://doi.org/10.1016/j.jos.2021.11.018 .
doi: 10.1016/j.jos.2021.11.018
Yahya M, Saghir MZ. Empirical modelling to predict the refractive index of human blood. Phys Med Biol. 2016;61(4):1405–15. https://doi.org/10.1088/0031-9155/61/4/1405 .
doi: 10.1088/0031-9155/61/4/1405 pubmed: 26807785
Roblegg E, Coughran A, Sirjani D. Saliva: An all-rounder of our body. Eur J Pharm Biopharm. 2019;142:133–41. https://doi.org/10.1016/j.ejpb.2019.06.016 .
doi: 10.1016/j.ejpb.2019.06.016 pubmed: 31220573

Auteurs

Yuki Inoue (Y)

Graduate School of Life Science, Hokkaido University, Kita 10-jo, Nishi 8-chome, Kita-ku, Sapporo, 060-0810, Japan.

Yuki Sato (Y)

Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo, 060-0812, Japan.

Hitoshi Kashiwagi (H)

Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo, 060-0812, Japan.

Shunsuke Nashimoto (S)

Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo, 060-0812, Japan.

Mitsuru Sugawara (M)

Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo, 060-0812, Japan.
Department of Pharmacy, Hokkaido University Hospital, Kita 14-jo, Nishi 5-chome, Kita-ku, Sapporo, 060-8648, Japan.
Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo, 060-0812, Japan.

Yoh Takekuma (Y)

Department of Pharmacy, Hokkaido University Hospital, Kita 14-jo, Nishi 5-chome, Kita-ku, Sapporo, 060-8648, Japan. y-kuma@pharm.hokudai.ac.jp.

Articles similaires

Vancomycin-associated DRESS demonstrates delay in AST abnormalities.

Ahmed Hussein, Kateri L Schoettinger, Jourdan Hydol-Smith et al.
1.00
Humans Drug Hypersensitivity Syndrome Vancomycin Female Male
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH