The Effect of Nanomaterials on DNA Methylation: A Review.
DNA hypermethylation
DNA hypomethylation
epigenetics
genome methylation
nanomaterial
nanotoxicology
Journal
Nanomaterials (Basel, Switzerland)
ISSN: 2079-4991
Titre abrégé: Nanomaterials (Basel)
Pays: Switzerland
ID NLM: 101610216
Informations de publication
Date de publication:
17 Jun 2023
17 Jun 2023
Historique:
received:
18
05
2023
revised:
13
06
2023
accepted:
15
06
2023
medline:
27
6
2023
pubmed:
27
6
2023
entrez:
27
6
2023
Statut:
epublish
Résumé
DNA methylation is an epigenetic mechanism that involves the addition of a methyl group to a cytosine residue in CpG dinucleotides, which are particularly abundant in gene promoter regions. Several studies have highlighted the role that modifications of DNA methylation may have on the adverse health effects caused by exposure to environmental toxicants. One group of xenobiotics that is increasingly present in our daily lives are nanomaterials, whose unique physicochemical properties make them interesting for a large number of industrial and biomedical applications. Their widespread use has raised concerns about human exposure, and several toxicological studies have been performed, although the studies focusing on nanomaterials' effect on DNA methylation are still limited. The aim of this review is to investigate the possible impact of nanomaterials on DNA methylation. From the 70 studies found eligible for data analysis, the majority were in vitro, with about half using cell models related to the lungs. Among the in vivo studies, several animal models were used, but most were mice models. Only two studies were performed on human exposed populations. Global DNA methylation analyses was the most frequently applied approach. Although no trend towards hypo- or hyper-methylation could be observed, the importance of this epigenetic mechanism in the molecular response to nanomaterials is evident. Furthermore, methylation analysis of target genes and, particularly, the application of comprehensive DNA methylation analysis techniques, such as genome-wide sequencing, allowed identifying differentially methylated genes after nanomaterial exposure and affected molecular pathways, contributing to the understanding of their possible adverse health effects.
Identifiants
pubmed: 37368308
pii: nano13121880
doi: 10.3390/nano13121880
pmc: PMC10305477
pii:
doi:
Types de publication
Journal Article
Review
Langues
eng
Subventions
Organisme : Fundação para a Ciência e Tecnologia
ID : PTDC/SAUPUB/32587/2017
Organisme : Fundação para a Ciência e Tecnologia
ID : UIDB / 00009 / 2020 and UIDP/ 00009 / 2020
Références
PLoS One. 2017 Jan 12;12(1):e0169886
pubmed: 28081255
Materials (Basel). 2019 Mar 29;12(7):
pubmed: 30934809
Int J Nanomedicine. 2019 Jun 24;14:4573-4587
pubmed: 31296987
Environ Sci Pollut Res Int. 2021 Aug;28(32):43684-43697
pubmed: 33840017
Mol Neurobiol. 2017 Mar;54(2):1285-1300
pubmed: 26843106
Asian Pac J Cancer Prev. 2016;17(S3):219-24
pubmed: 27165229
Mutagenesis. 2017 Jan;32(1):161-172
pubmed: 27803034
Sci Rep. 2018 Apr 27;8(1):6668
pubmed: 29703973
ACS Nano. 2021 Apr 27;15(4):7094-7104
pubmed: 33761739
J Nanosci Nanotechnol. 2021 Nov 1;21(11):5414-5428
pubmed: 33980351
Small. 2016 Feb 3;12(5):631-46
pubmed: 26676601
PLoS One. 2016 Jun 30;11(6):e0158475
pubmed: 27362941
ACS Nano. 2021 May 25;15(5):8225-8243
pubmed: 33938728
Int J Nanomedicine. 2015 Sep 01;10:5561-9
pubmed: 26366077
J Immunol. 1972 Jul;109(1):129-35
pubmed: 4113792
Nanomedicine (Lond). 2014 Nov;9(16):2557-85
pubmed: 25490426
Nucleic Acids Res. 1980 Oct 24;8(20):4763-76
pubmed: 7003544
Front Bioeng Biotechnol. 2022 May 19;10:912178
pubmed: 35677306
Biomed Chromatogr. 2000 Oct;14(6):422-9
pubmed: 11002279
Lancet Oncol. 2014 Dec;15(13):1427-1428
pubmed: 25499275
Int J Nanomedicine. 2020 Aug 11;15:5963-5975
pubmed: 32884259
J Nanobiotechnology. 2004 Apr 30;2(1):3
pubmed: 15119954
Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9821-6
pubmed: 8790415
Arch Toxicol. 2017 Feb;91(2):651-666
pubmed: 27387714
Nat Rev Genet. 2010 Jan;11(1):31-46
pubmed: 19997069
Environ Int. 2020 Mar;136:105447
pubmed: 31924578
Part Fibre Toxicol. 2019 Jun 18;16(1):24
pubmed: 31215478
J Nanosci Nanotechnol. 2021 Oct 1;21(10):5083-5098
pubmed: 33875094
Biomaterials. 2011 Oct;32(30):7609-15
pubmed: 21764123
Environ Int. 2020 Apr;137:105530
pubmed: 32062310
Int J Nanomedicine. 2016 Sep 07;11:4509-4519
pubmed: 27660443
Toxicol Lett. 2012 Mar 25;209(3):264-9
pubmed: 22265868
Curr Opin Biotechnol. 2001 Feb;12(1):41-7
pubmed: 11167071
Nanotoxicology. 2017 Sep;11(7):857-870
pubmed: 28901819
Nat Biotechnol. 2010 Oct;28(10):1057-68
pubmed: 20944598
Biomed Res Int. 2014;2014:498420
pubmed: 25165707
J Nanosci Nanotechnol. 2020 Mar 1;20(3):1454-1462
pubmed: 31492307
Biol Pharm Bull. 2020;43(12):1924-1930
pubmed: 33268710
Nanomaterials (Basel). 2020 Aug 29;10(9):
pubmed: 32872399
Exp Mol Med. 2004 Feb 29;36(1):1-12
pubmed: 15031665
Nanomaterials (Basel). 2019 Aug 30;9(9):
pubmed: 31480309
Adv Exp Med Biol. 2022;1357:179-194
pubmed: 35583645
J Appl Toxicol. 2018 Mar;38(3):385-397
pubmed: 29094763
Mutat Res Genet Toxicol Environ Mutagen. 2016 Mar;798-799:1-10
pubmed: 26994488
Toxicol Lett. 2009 Sep 10;189(2):138-44
pubmed: 19477248
NanoImpact. 2018 Jul;11:99-108
pubmed: 32140619
Antioxidants (Basel). 2020 Aug 03;9(8):
pubmed: 32756399
Epigenetics. 2020 Mar;15(3):283-293
pubmed: 31512544
Nanotoxicology. 2016;10(5):629-39
pubmed: 26559097
Int J Nanomedicine. 2015 Nov 13;10:7057-71
pubmed: 26622177
Mutagenesis. 2017 Jan;32(1):181-191
pubmed: 28011750
Part Fibre Toxicol. 2018 Feb 9;15(1):11
pubmed: 29426343
Toxicol Lett. 2017 Jul 5;276:48-61
pubmed: 28529146
Ecotoxicol Environ Saf. 2019 Jul 30;176:1-10
pubmed: 30903973
Curr Opin Pediatr. 2009 Apr;21(2):243-51
pubmed: 19663042
Mutagenesis. 2017 Jan;32(1):91-103
pubmed: 27798195
Neuropsychopharmacology. 2013 Jan;38(1):23-38
pubmed: 22781841
Nanotoxicology. 2016;10(2):140-50
pubmed: 25938281
Toxicol Res (Camb). 2021 Aug 31;10(5):1045-1051
pubmed: 34733489
Ecotoxicol Environ Saf. 2019 Mar;169:370-375
pubmed: 30466017
Int J Mol Sci. 2021 Jul 22;22(15):
pubmed: 34360600
Nanotoxicology. 2017 Sep;11(7):923-935
pubmed: 28958182
Biomed Res Int. 2013;2013:535796
pubmed: 23936814
Cells. 2021 Mar 19;10(3):
pubmed: 33808775
Toxicol Sci. 2022 Oct 27;190(1):64-78
pubmed: 36066426
Sci Rep. 2016 Feb 02;6:20207
pubmed: 26831369
Essays Biochem. 2018 Dec 2;62(5):643-723
pubmed: 30509934
NanoImpact. 2017 Jan;5:61-69
pubmed: 30734006
Annu Rev Public Health. 2018 Apr 1;39:309-333
pubmed: 29328878
Biochem Biophys Res Commun. 2010 Jul 2;397(3):397-400
pubmed: 20501321
Foods. 2020 Feb 03;9(2):
pubmed: 32028580
J Anim Physiol Anim Nutr (Berl). 2019 Mar;103(2):675-686
pubmed: 30618103
Nanotoxicology. 2020 May;14(4):534-553
pubmed: 32031460
Epigenetics Chromatin. 2016 Jun 29;9:26
pubmed: 27358654
Int J Mol Sci. 2018 Nov 16;19(11):
pubmed: 30453526
Environ Health Perspect. 2016 Feb;124(2):210-9
pubmed: 26080392
Aquat Toxicol. 2018 Jul;200:102-113
pubmed: 29729476
J Hazard Mater. 2017 Jun 5;331:329-335
pubmed: 28273583
Sci Total Environ. 2012 Dec 15;441:117-24
pubmed: 23137976
Biomaterials. 2017 Jan;115:167-180
pubmed: 27914347
Environ Sci Technol. 2021 Mar 2;55(5):3144-3155
pubmed: 33569944
Biotechnol Bioeng. 2021 Aug;118(8):2906-2922
pubmed: 34050923
Mutat Res. 2017 Feb;796:1-12
pubmed: 28212500
Lancet Oncol. 2006 Apr;7(4):295-6
pubmed: 16598890
J Hazard Mater. 2021 Jan 15;402:123500
pubmed: 32712356
J Hazard Mater. 2020 Jan 5;381:120995
pubmed: 31425913
Sci Rep. 2016 Feb 12;6:21688
pubmed: 26867977
J Biomed Mater Res A. 2015 Jul;103(7):2499-507
pubmed: 25530348
Toxicol Sci. 2017 Mar 1;156(1):261-274
pubmed: 28115643
Environ Toxicol Pharmacol. 2021 Jan;81:103543
pubmed: 33166681
Chem Biol Interact. 2022 Sep 25;365:110094
pubmed: 35961540
J Appl Toxicol. 2019 Feb;39(2):322-332
pubmed: 30289172
Front Bioeng Biotechnol. 2022 Jun 16;10:927036
pubmed: 35782501