Exploring molecular fingerprints of different drugs having bile interaction: a stepping stone towards better drug delivery.

Bayesian Bile Fingerprints QSAR-Co Recursive portioning SARpy

Journal

Molecular diversity
ISSN: 1573-501X
Titre abrégé: Mol Divers
Pays: Netherlands
ID NLM: 9516534

Informations de publication

Date de publication:
27 Jun 2023
Historique:
received: 20 01 2023
accepted: 10 06 2023
medline: 28 6 2023
pubmed: 28 6 2023
entrez: 27 6 2023
Statut: aheadofprint

Résumé

Bile acids are amphiphilic substances produced naturally in humans. In the context of drug delivery and dosage form design, it is critical to understand whether a drug interacts with bile inside the gastrointestinal (GI) tract or not. This study focuses on the identification of structural fingerprints/features important for bile interaction. Molecular modelling methods such as Bayesian classification and recursive partitioning (RP) studies are executed to find important fingerprints/features for the bile interaction. For the Bayesian classification study, the ROC score of 0.837 and 0.950 are found for the training set and the test set compounds, respectively. The fluorine-containing aliphatic/aromatic group, the branched chain of the alkyl group containing hydroxyl moiety and the phenothiazine ring etc. are identified as good fingerprints having a positive contribution towards bile interactions, whereas, the bad fingerprints such as free carboxylate group, purine, and pyrimidine ring etc. have a negative contribution towards bile interactions. The best tree (tree ID: 1) from the RP study classifies the bile interacting or non-interacting compounds with a ROC score of 0.941 for the training and 0.875 for the test set. Additionally, SARpy and QSAR-Co analyses are also been performed to classify compounds as bile interacting/non-interacting. Moreover, forty-six recently FDA-approved drugs have been screened by the developed SARpy and QSAR-Co models to assess their bile interaction properties. Overall, this attempt may facilitate the researchers to identify bile interacting/non-interacting molecules in a faster way and help in the design of formulations and target-specific drug development.

Identifiants

pubmed: 37369957
doi: 10.1007/s11030-023-10670-2
pii: 10.1007/s11030-023-10670-2
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : SERB, Govt. of India
ID : MTR/2022/000286

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

Mithani SD, Bakatselou V, TenHoor CN, Dressman JB (1996) Estimation of the increase in solubility of drugs as a function of bile salt concentration. Pharm Res 13:163–167. https://doi.org/10.1023/A:1016062224568
doi: 10.1023/A:1016062224568 pubmed: 8668668
Tangerman A, van Schaik A, van der Hoek EW (1986) Analysis of conjugated and unconjugated bile acids in serum and jejunal fluid of normal subjects. Clin Chim Acta 159:123–132. https://doi.org/10.1016/0009-8981(86)90044-6
doi: 10.1016/0009-8981(86)90044-6 pubmed: 3769204
Peeters TL, Vantrappen G, Janssens J (1980) Bile acid output and the interdigestive migrating motor complex in normals and in cholecystectomy patients. Gastroenterology 79:678–681. https://doi.org/10.1016/0016-5085(80)90244-9
doi: 10.1016/0016-5085(80)90244-9 pubmed: 7409386
Stamp D, Jenkins G (2008) An overview of bile-acid synthesis, chemistry and function. In: Jenkins GJ, Hardie LJ (Ed) Bile Acids: Toxicology and Bioactivity Issue 4 of Issues in toxicology, Royal Society of Chemistry, Great Britain, pp 1–13
Sugioka H, Moroi Y (1998) Micelle formation of sodium cholate and solubilization into the micelle. Biochim Biophys Acta BBA 1394:99–110. https://doi.org/10.1016/S0005-2760(98)00090-3
doi: 10.1016/S0005-2760(98)00090-3 pubmed: 9767136
Friedler A (2008) Bile Acids: chemistry, biosynthesis, analysis, chemical and metabolic transformations and pharmacology. Open Chem 6:131–131. https://doi.org/10.2478/s11532-007-0072-2
doi: 10.2478/s11532-007-0072-2
Darkoh C, Lichtenberger LM, Ajami N, Dial EJ, Jiang ZD, DuPont HL (2010) Bile acids improve the antimicrobial effect of rifaximin. Antimicrob Agents Chemother 54:3618–3624. https://doi.org/10.1128/AAC.00161-10
doi: 10.1128/AAC.00161-10 pubmed: 20547807 pmcid: 2934964
Nanjwade BK, Patel DJ, Udhani RA, Manvi FV (2011) Functions of lipids for enhancement of oral bioavailability of poorly water-soluble drugs. Sci Pharm 79:705–727. https://doi.org/10.3797/scipharm.1105-09
doi: 10.3797/scipharm.1105-09 pubmed: 22145101 pmcid: 3221495
Pavlović N, Goločorbin-Kon S, Ðanić M, Stanimirov B, Al-Salami H, Stankov K, Mikov M (2018) Bile acids and their derivatives as potential modifiers of drug release and pharmacokinetic profiles. Front Pharmacol 9:1283. https://doi.org/10.3389/fphar.2018.01283
doi: 10.3389/fphar.2018.01283 pubmed: 30467479 pmcid: 6237018
Kim K, Yoon I, Chun I, Lee N, Kim T, Gwak HS (2011) Effects of bile salts on the lovastatin pharmacokinetics following oral administration to rats. Drug Deliv 18:79–83. https://doi.org/10.3109/10717544.2010.512024
doi: 10.3109/10717544.2010.512024 pubmed: 20809680
Schlauersbach J, Kehrein J, Hanio S, Galli B, Harlacher C, Heidenreich C, Lenz B, Sotriffer C, Meinel L (2022) Predicting bile and lipid interaction for drug substances. Mol Pharm 19:2868–2876. https://doi.org/10.1021/acs.molpharmaceut.2c00227
doi: 10.1021/acs.molpharmaceut.2c00227 pubmed: 35776440
Berrar D (2018) Bayes’ theorem and naive Bayes classifier. Encyclopedia Bioinform Comput Biol 403:412
Banerjee S, Amin SA, Jha T (2022) A fragment-based structural analysis of MMP-2 inhibitors in search of meaningful structural fragments. Comp Biol Med 144: 105360. https://doi.org/10.1016/j.compbiomed.2022.105360
Chen L, Li Y, Zhao Q, Peng H, Hou T (2011) ADME evaluation in drug discovery. 10. Predictions of P-glycoprotein inhibitors using recursive partitioning and naive Bayesian classification techniques. Mol Pharm 8:889–900. https://doi.org/10.1021/mp100465q
doi: 10.1021/mp100465q pubmed: 21413792
Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50:742–754. https://doi.org/10.1021/ci100050t
doi: 10.1021/ci100050t pubmed: 20426451
Bhardwaj B, Baidya ATK, Amin SA, Adhikari N, Jha T, Gayen S (2019) Insight into structural features of phenyltetrazole derivatives as ABCG2 inhibitors for the treatment of multidrug resistance in cancer. SAR QSAR Environ Res 30:457–475. https://doi.org/10.1080/1062936X.2019.1615545
doi: 10.1080/1062936X.2019.1615545 pubmed: 31157558
Amin SA, Adhikari N, Jha T (2021) Development of decision trees to discriminate HDAC8 inhibitors and non-inhibitors using recursive partitioning. J Biomol Struct Dyn 39:1–8. https://doi.org/10.1080/07391102.2019.1661876
doi: 10.1080/07391102.2019.1661876 pubmed: 31530244
Gini G, Ferrari T, Lombardo A, Cassano A, Benfenati E (2019) A new QSAR model for acute fish toxicity based on mined structural alerts. J Toxicol Risk Assess 5:2572–2580. https://doi.org/10.23937/2572-4061.1510016
doi: 10.23937/2572-4061.1510016
Chen Y, Yang H, Wu Z, Liu G, Tang Y, Li W (2018) Prediction of farnesoid X receptor disruptors with machine learning methods. Chem Res Toxicol 31:1128–1137. https://doi.org/10.1021/acs.chemrestox.8b00162
doi: 10.1021/acs.chemrestox.8b00162 pubmed: 30371063
Ghosh K, Amin SA, Gayen S, Jha T (2021) Unmasking of crucial structural fragments for coronavirus protease inhibitors and its implications in COVID-19 drug discovery. J Mol Struct 1237:130366. https://doi.org/10.1016/j.molstruc.2021.130366
doi: 10.1016/j.molstruc.2021.130366 pubmed: 33814612 pmcid: 7997030
Pizzo F, Lombardo A, Manganaro A, Benfenati E (2016) A new structure-activity relationship (SAR) model for predicting drug-induced liver injury, based on statistical and expert-based structural alerts. Front Pharmacol 7:442. https://doi.org/10.3389/fphar.2016.00442
doi: 10.3389/fphar.2016.00442 pubmed: 27920722 pmcid: 5118449
Ambure P, Halder AK, Gonzalez Diaz H, Cordeiro MN (2019) QSAR-Co: An open source software for developing robust multitasking or multitarget classification-based QSAR models. J Chem Inf Model 59:2538–2544. https://doi.org/10.1021/acs.jcim.9b00295
doi: 10.1021/acs.jcim.9b00295 pubmed: 31083984
Halder AK, Giri AK, Cordeiro MNDS (2019) Multi-target chemometric modelling, fragment analysis and virtual screening with ERK inhibitors as potential anticancer agents. Molecules 24:3909. https://doi.org/10.3390/molecules24213909
doi: 10.3390/molecules24213909 pubmed: 31671605 pmcid: 6864583
Ambure P, Ballesteros A, Huertas F, Camilleri P, Barigye SJ, Gozalbes R (2020) Development of generalized QSAR models for predicting cytotoxicity and genotoxicity of metal oxides nanoparticles. Int J Quant Struct Prop Rel 5:83–100. https://doi.org/10.4018/IJQSPR.20201001.oa2
doi: 10.4018/IJQSPR.20201001.oa2
Ortega-Tenezaca B, Quevedo-Tumailli V, Bediaga H, Collados J, Arrasate S, Madariaga G, Munteanu CR, Cordeiro MN, González-Díaz H (2020) PTML multi-label algorithms: models, software, and applications. Curr Top Med Chem 20:2326–2337. https://doi.org/10.2174/1568026620666200916122616
doi: 10.2174/1568026620666200916122616 pubmed: 32938352
Halder AK, Cordeiro MN (2021) AKT inhibitors: the road ahead to computational modeling-guided discovery. Int J Mol Sci 22:3944. https://doi.org/10.3390/ijms22083944
doi: 10.3390/ijms22083944 pubmed: 33920446 pmcid: 8070654
Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE (2021) PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res 49:D1388–D1395. https://doi.org/10.1093/nar/gkaa971
doi: 10.1093/nar/gkaa971 pubmed: 33151290
Discovery Studio 3.0, (2015). Accelrys Inc., CA, USA.
Yap CW (2011) PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32:1466–1474. https://doi.org/10.1002/jcc.21707
doi: 10.1002/jcc.21707 pubmed: 21425294
Amin SA, Gayen S (2016) Modelling the cytotoxic activity of pyrazolo-triazole hybrids using descriptors calculated from the open source tool “PaDEL-descriptor.” J Taibah Univ Med Sci 10:896–905. https://doi.org/10.1016/j.jtusci.2016.04.009
doi: 10.1016/j.jtusci.2016.04.009
Pramanik S, Roy K (2014) Modeling bioconcentration factor (BCF) using mechanistically interpretable descriptors computed from open source tool “PaDEL-Descriptor.” Environ Sci Pollut Res 21:2955–2965. https://doi.org/10.1007/s11356-013-2247-z
doi: 10.1007/s11356-013-2247-z
Khan K, Baderna D, Cappelli C, Toma C, Lombardo A, Roy K, Benfenati E (2019) Ecotoxicological QSAR modeling of organic compounds against fish: Application of fragment based descriptors in feature analysis. Aquat Toxicol 212:162–174. https://doi.org/10.1016/j.aquatox.2019.05.011
doi: 10.1016/j.aquatox.2019.05.011 pubmed: 31128417
Jillella GK, Ojha PK, Roy K (2021) Application of QSAR for the identification of key molecular fragments and reliable predictions of effects of textile dyes on growth rate and biomass values of Raphidocelis subcapitata. Aquat Toxicol 238:105925. https://doi.org/10.1016/j.aquatox.2021.105925
doi: 10.1016/j.aquatox.2021.105925 pubmed: 34332198
Jillella GK, Khan K, Roy K (2020) Application of QSARs in identification of mutagenicity mechanisms of nitro and amino aromatic compounds against Salmonella typhimurium species. Toxicol In Vitro 65:4768. https://doi.org/10.1016/j.tiv.2020.104768
doi: 10.1016/j.tiv.2020.104768
Cereto-Massagué A, Ojeda MJ, Valls C, Mulero M, Garcia-Vallvé S, Pujadas G (2015) Molecular fingerprint similarity search in virtual screening. Methods 71:58–63. https://doi.org/10.1016/j.ymeth.2014.08.005
doi: 10.1016/j.ymeth.2014.08.005 pubmed: 25132639
Fernández-de Gortari E, García-Jacas CR, Martinez-Mayorga K, Medina-Franco JL (2017) Database fingerprint (DFP): an approach to represent molecular databases. J Cheminformatics 9:1–9. https://doi.org/10.1186/s13321-017-0195-1
doi: 10.1186/s13321-017-0195-1
Li Q, Wang Y, Bryant SH (2009) A novel method for mining highly imbalanced high-throughput screening data in PubChem. Bioinformatics 25:3310–3316. https://doi.org/10.1093/bioinformatics/btp589
doi: 10.1093/bioinformatics/btp589 pubmed: 19825798 pmcid: 2788930
Xie XQ (2010) Exploiting PubChem for virtual screening. Expert Opin Drug Discov 5:1205–1220. https://doi.org/10.1517/17460441.2010.524924
doi: 10.1517/17460441.2010.524924 pubmed: 21691435 pmcid: 3117665
Alpay BA, Gosink M, Aguiar D (2022) Evaluating molecular fingerprint-based models of drug side effects against a statistical control. Drug Discov Today 27:103364. https://doi.org/10.1016/j.drudis.2022.103364
doi: 10.1016/j.drudis.2022.103364 pubmed: 36115633
Xu C, Cheng F, Chen L, Du Z, Li W, Liu G, Lee PW, Tang Y (2012) In silico prediction of chemical Ames mutagenicity. J Chem Inf Model 52:2840–2847. https://doi.org/10.1021/ci300400a
doi: 10.1021/ci300400a pubmed: 23030379

Auteurs

Sourav Sardar (S)

Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.

Arijit Bhattacharya (A)

Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.

Sk Abdul Amin (SA)

Department of Pharmaceutical Technology, JIS University, 81, Nilgunj Road, Agarpara, Kolkata, West Bengal, India.

Tarun Jha (T)

Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India. tjupharm@yahoo.com.

Shovanlal Gayen (S)

Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India. shovanlal.gayen@gmail.com.

Classifications MeSH