Establishment of a Perfusion Process with Antibody-Producing CHO Cells Using a 3D-Printed Microfluidic Spiral Separator with Web-Based Flow Control.
3D printing
CHO
cell retention
microfluidic spiral separator
monoclonal antibodies
perfusion
web-based flow monitoring
Journal
Bioengineering (Basel, Switzerland)
ISSN: 2306-5354
Titre abrégé: Bioengineering (Basel)
Pays: Switzerland
ID NLM: 101676056
Informations de publication
Date de publication:
28 May 2023
28 May 2023
Historique:
received:
24
04
2023
revised:
22
05
2023
accepted:
25
05
2023
medline:
28
6
2023
pubmed:
28
6
2023
entrez:
28
6
2023
Statut:
epublish
Résumé
Monoclonal antibodies are increasingly dominating the market for human therapeutic and diagnostic agents. For this reason, continuous methods-such as perfusion processes-are being explored and optimized in an ongoing effort to increase product yields. Unfortunately, many established cell retention devices-such as tangential flow filtration-rely on membranes that are prone to clogging, fouling, and undesirable product retention at high cell densities. To circumvent these problems, in this work, we have developed a 3D-printed microfluidic spiral separator for cell retention, which can readily be adapted and replaced according to process conditions (i.e., a plug-and-play system) due to the fast and flexible 3D printing technique. In addition, this system was also expanded to include automatic flushing, web-based control, and notification via a cellphone application. This set-up constitutes a proof of concept that was successful at inducing a stable process operation at a viable cell concentration of 10-17 × 10
Identifiants
pubmed: 37370588
pii: bioengineering10060656
doi: 10.3390/bioengineering10060656
pmc: PMC10295792
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : Deutsche Forschungsgemeinschaft
ID : 346772917
Références
Biomicrofluidics. 2014 Dec 05;8(6):064117
pubmed: 25553193
Lab Chip. 2014 Jan 21;14(2):415-23
pubmed: 24287742
Biomed Microdevices. 2015 Dec;17(6):110
pubmed: 26553099
J Pharm Sci. 2015 Mar;104(3):813-20
pubmed: 25417595
Adv Biochem Eng Biotechnol. 2018;165:277-322
pubmed: 28265699
Sci Rep. 2015 Jul 08;5:11018
pubmed: 26154774
Biomed Mater. 2020 Jul 20;15(5):055007
pubmed: 32348964
J Biotechnol. 2015 Nov 10;213:13-9
pubmed: 26073998
Biotechnol Bioeng. 2021 May;118(5):1951-1961
pubmed: 33559879
Eng Life Sci. 2021 Nov 07;22(12):744-759
pubmed: 36514534
Anal Chem. 2015 Dec 1;87(23):11893-900
pubmed: 26531886
Sensors (Basel). 2018 Jun 01;18(6):
pubmed: 29857563
Sci Rep. 2013;3:1259
pubmed: 23405273
Sci Rep. 2017 Jul 27;7(1):6703
pubmed: 28751635
Soft Matter. 2020 Mar 28;16(12):3096-3105
pubmed: 32149313
Lab Chip. 2014 Jan 7;14(1):128-37
pubmed: 23949794
Anal Chem. 2018 Aug 7;90(15):9515-9522
pubmed: 30001491
Lab Chip. 2009 Oct 21;9(20):2973-80
pubmed: 19789752
Biotechnol Bioeng. 2017 Sep;114(9):1978-1990
pubmed: 28409838
Eng Life Sci. 2022 Feb 24;22(5):427-436
pubmed: 35573136
Biotechnol Bioeng. 2015 Apr;112(4):648-51
pubmed: 25694022
Eng Life Sci. 2022 Mar 31;22(11):699-708
pubmed: 36348657
Anal Chem. 2022 May 17;94(19):6930-6938
pubmed: 35502898
Micromachines (Basel). 2021 Aug 31;12(9):
pubmed: 34577708
Lab Chip. 2018 Sep 11;18(18):2826-2837
pubmed: 30079919
Anal Chem. 2017 Apr 4;89(7):3858-3866
pubmed: 28281349
Lab Chip. 2022 Mar 1;22(5):986-993
pubmed: 35107475
Biotechnol J. 2019 May;14(5):e1800674
pubmed: 30791214
Biotechnol Adv. 2018 Jul - Aug;36(4):1328-1340
pubmed: 29738813
Proc Natl Acad Sci U S A. 2007 Nov 27;104(48):18892-7
pubmed: 18025477
Angew Chem Int Ed Engl. 2016 Mar 14;55(12):3862-81
pubmed: 26854878
Biotechnol Bioeng. 2013 Jan;110(1):206-19
pubmed: 22806692
Sci Rep. 2015 Jan 12;5:7717
pubmed: 25578942
Biotechnol Prog. 2019 Mar;35(2):e2757
pubmed: 30479066
Int J Mol Sci. 2022 Nov 23;23(23):
pubmed: 36498949
Sci Rep. 2016 Dec 19;6:38809
pubmed: 27991494
J Biotechnol. 2016 Jan 10;217:1-11
pubmed: 26521697
Curr Opin Biotechnol. 2018 Oct;53:76-84
pubmed: 29289800