Neuromonitoring in Children with Traumatic Brain Injury.
Brain chemistry
Cerebral autoregulation
Cerebral oxygenation
Intracranial pressure
Neuromonitoring
Pediatric traumatic brain injury
Transcranial Doppler
Journal
Neurocritical care
ISSN: 1556-0961
Titre abrégé: Neurocrit Care
Pays: United States
ID NLM: 101156086
Informations de publication
Date de publication:
29 Jun 2023
29 Jun 2023
Historique:
received:
19
05
2022
accepted:
05
06
2023
medline:
30
6
2023
pubmed:
30
6
2023
entrez:
29
6
2023
Statut:
aheadofprint
Résumé
Traumatic brain injury remains a major cause of mortality and morbidity in children across the world. Current management based on international guidelines focuses on a fixed therapeutic target of less than 20 mm Hg for managing intracranial pressure and 40-50 mm Hg for cerebral perfusion pressure across the pediatric age group. To improve outcome from this complex disease, it is essential to understand the pathophysiological mechanisms responsible for disease evolution by using different monitoring tools. In this narrative review, we discuss the neuromonitoring tools available for use to help guide management of severe traumatic brain injury in children and some of the techniques that can in future help with individualizing treatment targets based on advanced cerebral physiology monitoring.
Identifiants
pubmed: 37386341
doi: 10.1007/s12028-023-01779-1
pii: 10.1007/s12028-023-01779-1
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. Crown.
Références
Dewan MCMN, Wellons C III, Bonfield CM. Epidemiology of global pediatric traumatic brain injury: qualitative review. World Neurosurg. 2016;91:497–509.
pubmed: 27018009
doi: 10.1016/j.wneu.2016.03.045
Kochanek PM, Tasker RC, Carney N, et al. Guidelines for the management of pediatric severe traumatic brain injury, third edition: update of the brain trauma foundation guidelines. Pediatr Crit Care Med. 2019;20:S1–82.
pubmed: 30829890
doi: 10.1097/PCC.0000000000001735
Musick SAA. Neurologic assessment of the neurocritical care patient. Front Neurol. 2021;12:588989.
pubmed: 33828517
pmcid: 8019734
doi: 10.3389/fneur.2021.588989
Lazaridis C. Cerebral oxidative metabolism failure in traumatic brain injury: brain shock. J Crit Care. 2017;37:230–3.
pubmed: 27773372
doi: 10.1016/j.jcrc.2016.09.027
Lazaridis CRC, Robertson CS. Secondary brain injury: predicting and preventing insults. Neuropharmacology. 2019;145:145–52.
pubmed: 29885419
doi: 10.1016/j.neuropharm.2018.06.005
Kochanek PMCR, Ruppel RA, Adelson PD, Bell MJ, Whalen MJ, Roberston CL. Biochemical, cellular and molecular mechanisms in the evolutionof secondary brain damage after traumatic brian injury in infants and children: lessons learned from the bedside. Pediatr Crit Care Med. 2000;1:4–19.
pubmed: 12813280
doi: 10.1097/00130478-200007000-00003
Young AMGM, Donnelly J, Smielewski P, Agrawal S, Czosnyka M, Hutchinson PJ. Multimodality neuromonitoring in severe pediatric traumatic brain injury. Pediatr Res. 2018;83:41–9.
pubmed: 29084196
doi: 10.1038/pr.2017.215
Brennan PM, Murray GD, Teasdale GM. Simplifying the use of prognostic information in traumatic brain injury. Part 1: the GCS-Pupils score: an extended index of clinical severity. J Neurosurg. 2018;128:1612–20.
pubmed: 29631516
doi: 10.3171/2017.12.JNS172780
Murray GD, Brennan PM, Teasdale GM. Simplifying the use of prognostic information in traumatic brain injury. Part 2: Graphical presentation of probabilities. J Neurosurg. 2018;128:1621–34.
pubmed: 29631517
doi: 10.3171/2017.12.JNS172782
Emami PCP, Fritzsche FS, Westphal M, Rueger JM, Lefering R, et al. Impact of Glasgow Coma Scale score and pupil parameters on mortality rate and outcome in pediatric and adult severe traumatic brain injury: a retrospective, multicenter cohort study. J Neurosurg. 2017;126:760–7.
pubmed: 27035177
doi: 10.3171/2016.1.JNS152385
Murphy STN, Gertz SJ, Beca J, Luther JF, Bell MJ, Wisniewski SR, Hartman AL, Tasker RC, et al. Tripartite stratification of the glasgow coma scale in children with sever traumatic brain injury and mortality: an analysis from a multi-center comparative effectiveness study. J Neurotrauma. 2017;34:2220–9.
pubmed: 28052716
pmcid: 5510706
doi: 10.1089/neu.2016.4793
Tien HCCJ, Wu SN, Chughtai T, Tremblay LN, Brenneman FD, et al. Do trauma patinets with a Glasgow Coma Scale score of 3 and bilateral fixed and dilated pupils have any chance of survival? J Trauma. 2006;60:274–8.
pubmed: 16508482
doi: 10.1097/01.ta.0000197177.13379.f4
Couret DBD, Grisotto C, Triglia T, Pellegrini L, Ocquidant P, Bruder NJ, Velly LJ. Reliability of standard pupillometry practice in neurocritical care: an observational, double-blinded study. Crit Care. 2016;13(20):99.
doi: 10.1186/s13054-016-1239-z
Freeman ADMC, Stockwell JA. Automated pupillary measurements inversely correlate with increased intracranial pressure in pediatric patients with acute brain injury or encephalopathy. Pediatr Crit Care Med. 2020;21:753–9.
pubmed: 32195898
doi: 10.1097/PCC.0000000000002327
Oddo MCI, Mehta S, Menon D, Payen JF, Tacone FS, Citerio G. Optimizing sedation in patients with acute brain injury. Crit Care. 2016;20:128.
pubmed: 27145814
pmcid: 4857238
doi: 10.1186/s13054-016-1294-5
Hawryluk GWJ, Aguilera S, Buki A, et al. A management algorithm for patients with intracranial pressure monitoring: the Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC). Intensive Care Med. 2019;45:1783–94.
pubmed: 31659383
pmcid: 6863785
doi: 10.1007/s00134-019-05805-9
Kirschen MPSK, Snyder M, Zhang B, Flibotte J, Heimall L, Budzynski K, DeLeo R, Cona J, Bocage C, Hur L, Winters M, Hanna R, Mensinger JL, Huh J, Lang SS, Barg FK, Shea JA, Ichord R, Berg RA, Levine JM, Nadkarni V, Topjian A. Serial neurologic assessment in pediatrics (SNAP): a new tool for bedside neurologic assessment of critically Ill children. Pediatr Crit Care Med. 2021;22:483–95.
pubmed: 33729729
doi: 10.1097/PCC.0000000000002675
Kirkham FJ, Newton CR, Whitehouse W. Paediatric coma scales. Dev Med Child Neurol. 2008;50:267–74.
pubmed: 18312424
doi: 10.1111/j.1469-8749.2008.02042.x
Wilson MH. Monroe Kellie 2.0: the dynamic vascular and venous pathophysiological components of intracranial pressure. JCBFM. 2016;36:1338–50.
Bales JWBR, Buckley RT, Barber J, Temkin N, Chesnut RM. Primary external ventricular drainage catheter versus intraparenchymal ICP monitoring: outcome analysis. Neurocrit Care. 2019;31:11–21.
pubmed: 31037639
doi: 10.1007/s12028-019-00712-9
Volovici VPD, Gravesteijn BY, Dirven CMF, Steyerberg EW, Ercole A, Stochetti N, Nelson D, Menon DK, Citerio G, et al. Comparative effectiveness of intracranial hypertension management guided by ventricular versus intraparenchymal pressure monitoring: a CENTER-TBI study. Acta Neurochir. 2022;164:1693–705.
pubmed: 35648213
doi: 10.1007/s00701-022-05257-z
Bell MJ, Rosario BL, Kochanek PM, et al. Comparative effectiveness of diversion of cerebrospinal fluid for children with severe traumatic brain injury. JAMA Netw Open. 2022;5:e2220969-e.
doi: 10.1001/jamanetworkopen.2022.20969
Fernando SM, Tran A, Cheng W, et al. Diagnosis of elevated intracranial pressure in critically ill adults: systematic review and meta-analysis. BMJ. 2019;366:l4225.
pubmed: 31340932
pmcid: 6651068
doi: 10.1136/bmj.l4225
Robba CPS, Moro B, Vincent JL, Creteur J, Taccone FS. Multimodal non-invasive assessment of intracranial hypertension: an observational study. Crit Care. 2020;24:379.
pubmed: 32591024
pmcid: 7318399
doi: 10.1186/s13054-020-03105-z
Fernando SMTA, Cheng W, Rochwerg B, Taljaard M, Kyeremanteng K, English SW, Sekhon MS, Griesdale DEG, Dowlatshahi D, McCredie VA, Wijdicks EFM, Almenawer SA, Inaba K, Rajajee V, Perry JJ. Diagnosis of elevated intracranial pressure in critically ill adults: systematic review and meta-analysis. BMJ. 2019;24:366.
Stippler MOV, Adelson PD, Chang YF, Tyler-Kabara EC, Wisniewski SR, Fink EL, Kochanek PM, Brown SD, Bell MJ. Brain tissue oxygen monitoring after severe traumatic brain injury in children: relationship to outcome and association with other clinical parameters. J Neurosurg Pediatr. 2012;10:383–91.
pubmed: 22978637
doi: 10.3171/2012.8.PEDS12165
Chambers IRTL, Mendelow AD. Determination of threshold levels of cerebral perfusion pressure and intracranial pressure in severe head injury by using receiver-operating characteristic curves: an observational study in 291 patients. J Nueorsurg. 2001;94:412–6.
Alberico AM, Ward JD, Choi SC, et al. Outcome after severe head injury. Relationship to mass lesions, diffuse injury, and ICP course in pediatric and adult patients. J Neurosurg. 1987;67:648–56.
pubmed: 3668633
doi: 10.3171/jns.1987.67.5.0648
Jagannathan JOD, Yeoh HK, et al. Long-term outcomes and prognostic factors in pediatric patients with severe traumatic brain injury and elevated intracranial pressure. J Nueorsurg Pediatr. 2008;2:240–9.
Wahlström MROM, Koskinen LO, et al. Severe traumatic brain injury in pediatric patients: treatment and outcome using an intracranial pressure targeted therapy—the Lund concept. Intensive Care Med. 2005;31:832–9.
pubmed: 15838678
doi: 10.1007/s00134-005-2632-2
Kasoff SSLT, Holder D, et al. Aggressive physiologic monitoring of pediatric head trauma patients with elevated intracranial pressure. Pediatr Neurosci. 1987;14:241–9.
doi: 10.1159/000120397
Bennett TD, Riva-Cambrin J, Keenan HT, et al. Variation in intracranial pressure monitoring and outcomes in pediatric traumatic brain injury. Arch Pediatr Adolesc Med. 2012;166:641–7.
pubmed: 22751878
pmcid: 4547349
doi: 10.1001/archpediatrics.2012.322
Bennett TDDP, Greene TH, et al. Functional outcome after intracranial pressure monitoring for children with severe traumatic brain injury. JAMA Pediatr. 2017;171:965–71.
pubmed: 28846763
pmcid: 5710627
doi: 10.1001/jamapediatrics.2017.2127
Alkhoury FKT. Intracranial pressure monitoring in children with severe traumatic brain injury: National Trauma Data Bank-based review of outcomes. JAMA Surg. 2014;149:544–8.
pubmed: 24789426
doi: 10.1001/jamasurg.2013.4329
Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, Petroni G, Lujan S, Pridgeon J, Barber J, Machamer J, Chaddock K, Celix JM, Cherner M, Hendrix T. Global Neurotrauma Research Group. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med 2012;367:2471–81.
Guiza F, Depreitere B, Piper I, et al. Visualizing the pressure and time burden of intracranial hypertension in adult and paediatric traumatic brain injury. Intensive Care Med. 2015;41:1067–76.
pubmed: 25894624
doi: 10.1007/s00134-015-3806-1
Zeiler FA EA, Cabeleira M, Beqiri E, Zoerle T, Carbonara M, Stocchetti N, Menon DK, Smielewski P, Czosnyka M. CENTER-TBI High Resolution ICU Sub-Study Participants and Investigators. Compensatory-reserve-weighted intracranial pressure versus intracranial pressure for outcome association in adult traumatic brain injury: a CENTER-TBI validation study. Acta Neurochir (Wien) 2019;161:1275–84.
Bratton SL, Chestnut RM, Ghajar J, et al. Guidelines for the management of severe traumatic brain injury. IX Cerebral perfusion thresholds. J Neurotrauma. 2007;24(Suppl 1):S59-64.
pubmed: 17511547
doi: 10.1089/neu.2007.9987
Chaiwat OSD, Udomphorn Y, et al. Cerebral hemodynamic predictors of poor 6-month Glasgow Outcoem Score in severe pediatric traumatic brain injury. J Neurotrauma. 2009;26:657–63.
pubmed: 19292656
pmcid: 2857571
doi: 10.1089/neu.2008.0770
Figaji AAZE, Thompson C, Fieggen AG, Argent AC, Le Roux PD, Peter JC. Brain tissue oxygen tension monitoring in pediatric severe traumatic brain injury. Childs Nerv Syst. 2009;25:1335–43.
pubmed: 19214533
doi: 10.1007/s00381-009-0821-y
Stiefel MFUJ, Storm PB, Sutton LN, Kim H, Dominguez TE, Helfaer MA, Huh JW. Brain tissue oxygen monitoring in pediatric patients with severe traumatic brain injury. J Neurosurg. 2006;105:281–6.
pubmed: 17328278
Woods KS, Horvat CM, Kantawala S, et al. Intracranial and cerebral perfusion pressure thresholds associated with inhospital mortality across pediatric neurocritical care. Pediatric Crit Care Med. 2021;22:135–46.
doi: 10.1097/PCC.0000000000002618
Czosnyka M, Brady K, Reinhard M, Smielewski P, Steiner LA. Monitoring of cerebrovascular autoregulation: facts, myths, and missing links. Neurocrit Care. 2009;10:373–86.
pubmed: 19127448
doi: 10.1007/s12028-008-9175-7
Udomphorn Y, Armstead WM, Vavilala MS. Cerebral blood flow and autoregulation after pediatric traumatic brain injury. Pediatr Neurol. 2008;38:225–34.
pubmed: 18358399
pmcid: 2330089
doi: 10.1016/j.pediatrneurol.2007.09.012
Freeman SS, Udomphorn Y, Armstead WM, Fisk DM, Vavilala MS. Young age as a risk factor for impaired cerebral autoregulation after moderate to severe pediatric traumatic brain injury. Anesthesiology. 2008;108:588–95.
pubmed: 18362589
doi: 10.1097/ALN.0b013e31816725d7
Donnelly JEYA, Brady K. Autoregulation in paediatric TBI-current evidence and implications for treatment. Childs Nerv Syst. 2017;33:1735–44.
pubmed: 29149389
doi: 10.1007/s00381-017-3523-x
Rangel-Castillo LGJ, Nauta HJW, Okonkwo DO, Robertson CS. Cerebral pressure autoregulation in traumatic brain injury. Neurosurg Focus. 2008;25:E7.
doi: 10.3171/FOC.2008.25.10.E7
Czosnyka MSP, Kirkpatrick P, Laing RJ, Menon D, Pickard JD. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997;41:11–7.
pubmed: 9218290
doi: 10.1097/00006123-199707000-00005
Sorrentino EDJ, Ksprowicz M, Budohoski KP, Haubrich C, Smielewski P, Outtrim JG, Manktelow A, Hutchinson PJ, Pickard JD, Menon DK, Czosnyka M. Critical thresholds for cerebrovascular reactivity after traumatic brain injury. Neurocrit Care. 2012;16:258–66.
pubmed: 21964774
doi: 10.1007/s12028-011-9630-8
Young AMDJ, Czosnyka M, Jalloh I, Liu X, Aries MJ, Fernandes HM, Garnett MR, Smielewski P, Hutchinson PJ, Agrawal S. Continuous multimodality in children after traumatic brain injury-preliminary experience. PLoS ONE. 2016;11:e0148817.
pubmed: 26978532
pmcid: 4792535
doi: 10.1371/journal.pone.0148817
Brady KMSD, Lee JK, Easley RB, Smielewski P, Czosnyka M, Jallo GI, Guerguerian AM. Continuous monitoring of cerebrovascular pressure reactivity after traumatic brain injury in children. Pediatrics. 2009;124:e1205–12.
pubmed: 19948619
doi: 10.1542/peds.2009-0550
LA Steiner CM, Piechnik SK, Smielewski P, Chatfield D, Menon DK, Pickard JD. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med. 2002;30:733–8.
pubmed: 11940737
doi: 10.1097/00003246-200204000-00002
Le Roux P MD, Citerio G, Vespa P, Bader MK, Brophy G, Diringer MN, Stocchetti N, Videtta W, Armonda R, Badjatia N, Bösel J, Chesnut R, Chou S, Claassen J, Czosnyka M, De Georgia M, Figaji A, Fugate J, Helbok R, Horowitz D, Hutchinson P, Kumar M, McNett M, Miller C, Naidech A, Oddo M, Olson D, O'Phelan K, Provencio JJ, Puppo C, Riker R, Roberson C, Schmidt M, Taccone F. The International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: evidentiary tables: a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Neurocrit Care 2014;21:S297- S361.
Tas JBE, van Kaam RC, Czosnyka M, Donnelly J, Haeren RH, van der Horst ICC, Hutchinson PJ, van Kuijk SMJ, Liberti AL, Menon DK, Hoedemaekers CWE, Depreitere B, Smielewski P, Meyfroidt G, Ercole A, Aries MJH. Targeting autoregulation-guided cerebral perfusion pressure after traumatic brain injury (COGiTATE): a feasibility randomized controlled clinical trial. J Neurotrauma. 2021;38:2790–800.
pubmed: 34407385
doi: 10.1089/neu.2021.0197
Agrawal S, Placek MM, White D, Daubney E, Cabeleira M, Smielewski P, Czosnyka M, Young A, Watson S, Maw A, Hutchinson PJ. Studying Trends of Auto-Regulation in Severe Head Injury in Paediatrics (STARSHIP): protocol to study cerebral autoregulation in a prospective multicentre observational research database study. BMJ Open. 2023;13(3):e071800
pubmed: 36898758
doi: 10.1136/bmjopen-2023-071800
Lo T, Piper I, Depreitere B, et al. KidsBrainIT: a new multi-centre, multi-disciplinary, multi-national paediatric brain monitoring collaboration. Acta Neurochir Suppl. 2018;126:39–45.
pubmed: 29492529
doi: 10.1007/978-3-319-65798-1_9
Agrawal S, Placek MM, White D, et al. Studying trends of auto-regulation in severe head injury in paediatrics (STARSHIP): protocol to study cerebral autoregulation in a prospective multicentre observational research database study. BMJ Open. 2023;13:e071800.
pubmed: 36898758
doi: 10.1136/bmjopen-2023-071800
Liu XCM, Donnelly J, Cardim D, Cabeleira M, Hutchinson PJ, Hu X, Smielewski P, Brady K. Wavelet pressure reactivity index: a validation study. J Physiol. 2018;596:2797–809.
pubmed: 29665012
pmcid: 6046066
doi: 10.1113/JP274708
Appavu BTM, Foldes S, Burrows BT, Kuwabara M, Jacobson A, Adelson PD. Association of outcomes with model-based indices of cerebral autoregulation after pediatric traumatic brain injury. Neurocrit Care. 2021;35:640–50.
pubmed: 34268644
doi: 10.1007/s12028-021-01279-0
Lazaridis C, Smielewski P, Menon DK, Hutchinson P, Pickard JD, Czosnyka M. Patient-specific thresholds and doses of intracranial hypertension in severe traumatic brain injury. Acta Neurochir Suppl. 2016;122:117–20.
pubmed: 27165889
doi: 10.1007/978-3-319-22533-3_23
Zeiler FA, Ercole A, Cabeleira M, Beqiri E, Zoerle T, Carbonara M, Stocchetti N, Menon DK, Lazaridis C, Smielewski P, Czosnyka M; CENTER-TBI High Resolution ICU Sub-Study Participants and Investigators. Patient-specific ICP epidemiologic thresholds in adult traumatic brain injury: a CENTER-TBI validation study. J Neurosurg Anesthesiol 2021;33:28–38.
Czosnyka MGE, Whitehouse M, Smielewski P, Czosnyka Z, Kirkpatrick P, Piechnik S, Pickard JD. Significance of intracranial pressure waveform analysis after head injury. Acta Neurochir (Wien). 1996;138:531–41.
pubmed: 8800328
doi: 10.1007/BF01411173
Aries MJCM, Budohoski KP, Kolias AG, Radolovich DK, Lavinio A, Pickard JD, Smielewski P. Continuous monitoring of cerebrovascular reactivity using pulse waveform of intracranial pressure. Neurocrit Care. 2012;17:67–76.
pubmed: 22477613
doi: 10.1007/s12028-012-9687-z
Elsamadicy AAKA, David WB, Lee V, Zogg CK, Kundishora AJ, Hong C, Reeves BC, Sarkozy M, Kahle KT, DiLuna M. ost-traumatic seizures following pediatric traumatic brain injury. Clin Neurol Neurosurg. 2021;203:106556.
pubmed: 33636505
doi: 10.1016/j.clineuro.2021.106556
Topjian AA, de Caen A, Wainwright MS, et al. pediatric post-cardiac arrest care: a scientific statement from the American Heart Association. Circulation. 2019;140:e194–233.
pubmed: 31242751
doi: 10.1161/CIR.0000000000000697
Appavu BBB, Nickoles T, Boerwinkle V, Willyerd A, Gunnala V, Mangum T, Marku I, Adelson PD. Implementation of multimodality neurologic monitoring reporting in pediatric traumatic brain injury management. Neurocrit Care. 2021;35:3–15.
pubmed: 33791948
pmcid: 8012079
doi: 10.1007/s12028-021-01190-8
O’Neill BRHM, Tong S, Chapman KE. Incidence of seizures on continuous EEG monitoring following traumatic brain injury in children. J Neurosurg Pediatr. 2015;16:167–76.
pubmed: 25955809
doi: 10.3171/2014.12.PEDS14263
Arndt DHLJ, Matsumoto JH, Madikians A, Yudovin S, Valino H, McArthur DL, Wu JY, Leung M, Buxey F, Szeliga C, Van Hirtum-Das M, Sankar R, Brooks-Kayal A, Giza CC. Subclinical early posttraumatic seizures detected by continuous EEG monitoring in a consecutive pediatric cohort. Epilepsia. 2013;54:1780–8.
pubmed: 24032982
pmcid: 4439105
doi: 10.1111/epi.12369
Kurz JE Poloyac SM, Abend NS, Fabio A, Bell MJ, Wainwright MS; Investigators for the Approaches and Decisions in Acute Pediatric TBI Trial. Variation in anticonvulsant selection and electroencephalographic monitoring following severe traumatic brain injury in children-understanding resource availability in sites participating in a comparative effectiveness study. Pediatr Crit Care Med 2016;17:649–57.
Vaewpanich J, Reuter-Rice K. Continuous Electroencephalography in pediatric traumatic brain injury: seizure characteristics and outcomes. Epilepsy Behav. 2016;62:225–30.
pubmed: 27500827
pmcid: 5014598
doi: 10.1016/j.yebeh.2016.07.012
Nadlonek NAAS, Bensard DD, Bansal S, Partrick DA. Early diffuse slowing on electroencephalogram in pediatric traumatic brain injury: impact on management and prognosis. J Pediatric Surg. 2015;50:1338–40.
doi: 10.1016/j.jpedsurg.2015.03.060
Müller MRA, Zimmermann R, Alvarez V, Ruegg S, Haenggi M, Z’Graggen WJ, Schindler K, Zubler F. Standardized visual EEG features predict outcome in patients with acute consciousness impairment of various etiologies. Crit Care. 2020;24:680.
pubmed: 33287874
pmcid: 7720582
doi: 10.1186/s13054-020-03407-2
Xie J, Burrows B, Fox Kensicki J, Adelson PD, Appavu B. Early electroencephalographic features predicting cerebral physiology and functional outcomes after pediatric traumatic brain injury. Neurocrit Care. 2023;38:657–66.
pubmed: 36329306
doi: 10.1007/s12028-022-01633-w
Sansevere AJHC, Abend NS. Conventional and quantitative EEG in status epilepticus. Seizure. 2019;68:38–45.
pubmed: 30528098
doi: 10.1016/j.seizure.2018.09.011
Appavu BFS, Temkit M, Jacobson A, Burrows BT, Brown D, Boerwinkle V, Marku I, Adelson PD. Intracranial electroencephalography in pediatric severe traumatic brain injury. Pediatr Crit Care Med. 2020;21:240–247.
pubmed: 31569184
doi: 10.1097/PCC.0000000000002136
Schmitt S, Dichter M. Electrophysiologic recordings in traumatic brain injury. New York: Elsevier; 2015.
doi: 10.1016/B978-0-444-52892-6.00021-0
Robinson LRMP, Tirschwell DL, Lew HL. Predictive value of somatosensory evoked potentials for awakening from coma. Crit Care Med. 2003;31:960–7.
pubmed: 12627012
doi: 10.1097/01.CCM.0000053643.21751.3B
Tisdall MMSM. Multimodal monitoring in traumatic brain injury: current status and future directions. Br J Anaesth. 2007;99:61–7.
pubmed: 17548431
doi: 10.1093/bja/aem143
Hessel TW, Hyttel-Sorensen S, Greisen G. Cerebral oxygenation after birth—a comparison of INVOS ® and FORE-SIGHTTM near-infrared spectroscopy oximeters. Acta Paediatr. 2014;103:488–93.
pubmed: 24456266
pmcid: 4112844
doi: 10.1111/apa.12567
Pisano AGN, Iovino TP, Angelone M, Corcione A. Direct comparison between cerebral oximetry by INVOS(TM) and EQUANOX(TM) during cardiac surgery: a pilot study. Heart Lung Vessel. 2014;6:197–203.
pubmed: 25279362
pmcid: 4181281
Thavasothy MBM, Elwell C, Peters M, Smith M. A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 Near-Infrared Spectrophotometers. Anaesthesia. 2002;57:999–1006.
pubmed: 12358958
doi: 10.1046/j.1365-2044.2002.02826.x
Bickler PEFJ, Rollins MD. Factors affecting the performance of 5 cerebral oximeters during hypoxia in healthy volunteers. Anesth Analog. 2013;117:813–23.
doi: 10.1213/ANE.0b013e318297d763
Dix LM, van Bel F, Baerts W, Lemmers PM. Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate. Pediatr Res. 2013;74:557–63.
pubmed: 23942560
doi: 10.1038/pr.2013.133
Brady KMLJ, Kibler KK, Smielewski P, Czosnyka M, Easley RB, Koehler RC, Shaffner DH. Continuous time-domain analysis of cerebrovascular autoregulation using near-infrared spectroscopy. Stroke. 2007;38:2818–25.
pubmed: 17761921
pmcid: 2377358
doi: 10.1161/STROKEAHA.107.485706
Abecasis FDC, Zakrzewska A, Oliveira V, Czosnyka M. Monitoring cerebrovascular reactivity in pediatric traumatic brain injury: comparison of three methods. Childs Nerv Syst. 2021;37:3057–65.
pubmed: 34212250
doi: 10.1007/s00381-021-05263-z
Adelson PD, Nemota E, Colak A, Painter M. The use of near infrared spectroscopy (NIRS) in children after traumatic brain injury: a preliminary report. In: Intracranial pressure and neuromonitoring in brain injury. Acta Neurochir Suppl 1998;71:250–4.
Hanalioglu DOA, Temkit M, Adelson PD, Appavu B. Carbon dioxide reactivity of brain tissue oxygenation after pediatric traumatic brain injury. Children (Basel). 2022;14:409.
Gosling RGKD. Arterial assessment by Doppler-shift ultrasound. Proc R Soc Med. 1974;67:447–9.
pubmed: 4850636
pmcid: 1645777
Abecasis FCD, Czosnyka M, Robba C, Agrawal S. Transcranial Doppler as a non-invasive method to estimate cerebral perfusion pressure in children with severe traumatic brain injury. Childs Nerv Syst. 2020;36:125–31.
pubmed: 31273494
doi: 10.1007/s00381-019-04273-2
O’Brien NFMT, Reuter-Rice K. Noninvasive screening for intracranial hypertension in children with acute, severe traumatic brain injury. J Neurosurg Pediatr. 2015;16:420–5.
pubmed: 26140576
doi: 10.3171/2015.3.PEDS14521
Czosnyka MRH, Whitehouse HE, Pickard JD. Relationship between transcranial Doppler-determined pulsatility index and cerebrovascular resistance: an experimental study. J Neurosurg. 1996;84:79–84.
pubmed: 8613840
doi: 10.3171/jns.1996.84.1.0079
Cardim DRC, Bohdanowicz M, Donnelly J, Cabella B, Liu X, Cabeleira M, Smielewski P, Schmidt B, Czosnyka M. Non-invasive monitoring of intracranial pressure using transcranial doppler ultrasonography: is it possible? Neurocrit Care. 2016;25:473–91.
pubmed: 26940914
pmcid: 5138275
doi: 10.1007/s12028-016-0258-6
Figaji AAZE, Fieggen AG, Siesjo P, Peter JC. Transcranial Doppler pulsatility index is not a reliable indicator of intracranial pressure in children with severe traumatic brain injury. Surg Neurol. 2009;72:389–94.
pubmed: 19608224
doi: 10.1016/j.surneu.2009.02.012
Melo JRDRF, Blanot S, Cuttaree H, Sainte-Rose C, Oliveira-Filho J, Zerah M, Meyer PG. Transcranial Doppler can predict intracranial hypertension in children with severe traumatic brain injuries. Childs Nerv Syst. 2011;27:979–84.
pubmed: 21207041
doi: 10.1007/s00381-010-1367-8
de Riva NBK, Smielewski P, Kasprowicz M, Zweifel C, Steiner LA, Reinhard M, Fábregas N, Pickard JD, Czosnyka M. Transcranial Doppler pulsatility index: what it is and what it isn’t. Neurocrit Care. 2012;17:58–66.
pubmed: 22311229
doi: 10.1007/s12028-012-9672-6
Czosnyka MSP, Kirkpatrick P, Menon DK, Pickard JD. Monitoring of cerebral autoregulation in head-injured patients. Stroke. 1996;27:1829–34.
pubmed: 8841340
doi: 10.1161/01.STR.27.10.1829
Vavilala MSLL, Boddu K, Visco E, Newell DW, Zimmerman JJ, Lam AM. Cerebral autoregulation in pediatric traumatic brain injury. Pediatr Crit Care Med. 2004;5:257–63.
pubmed: 15115564
doi: 10.1097/01.PCC.0000123545.69133.C3
Abecasis FOV, Robba C, Czosnyka M. Transcranial Doppler in pediatric emergency and intensive care unit: a case series and literature review. Childs Nerv Syst. 2018;34:1465–70.
pubmed: 29955941
doi: 10.1007/s00381-018-3877-8
Rohlwink UKZE, Fieggen AG, Argent AC, le Roux PD, Figaji AA. The relationship between intracranial pressure and brain oxygenation in children with severe traumatic brain injury. Neurosurgery. 2012;70:1220–31.
pubmed: 22134142
doi: 10.1227/NEU.0b013e318243fc59
Rakkar J, Azar J, Pelletier JH, et al. Temporal patterns in brain tissue and systemic oxygenation associated with mortality after severe traumatic brain injury in children. Neurocrit Care. 2022;38:71–84.
pubmed: 36171518
doi: 10.1007/s12028-022-01602-3
Okonkwo DOSL, Moore C, Temkin NR, Puccio AM, Madden CJ, Andaluz N, Chesnut RM, Bullock MR, Grant GA, McGregor J. Brain tissue oxygen monitoring and management in severe traumatic brain injury (BOOST-II): a phase II randomized trial. Crit Care Med. 2017;45:1907.
pubmed: 29028696
pmcid: 5679063
doi: 10.1097/CCM.0000000000002619
Bernard F, Barsan W, Diaz-Arrastia R, Merck LH, Yeatts S, Shutter LA, Shutter LA. Brain Oxygen Optimization in Severe Traumatic Brain Injury (BOOST-3): a multicentre, randomised, blinded-endpoint, comparative effectiveness study of brain tissue oxygen and intracranial pressure monitoring versus intracranial pressure alone. BMJ Open. 2022;12:e060188.
pubmed: 35273066
pmcid: 8915289
doi: 10.1136/bmjopen-2021-060188
Veenith TVCE, Geeraerts T, Grossac J, Newcombe VF, Outtrim J, Gee GS, Lupson V, Smith R, Aigbirhio FI, Fryer TD. Pathophysiologic mechanisms of cerebral ischemia and diffusion hypoxia in traumatic brain injury. JAMA Neurol. 2016;73:542–50.
pubmed: 27019039
doi: 10.1001/jamaneurol.2016.0091
Hutchinson PJJI, Helmy A, Carpenter KL, Rostami E, Bellander BM, Boutelle MG, Chen JW, Claassen J, Dahyot-Fizelier C, Enblad P. Consensus statement from the 2014 international microdialysis forum. Intensive Care Med. 2015;41:1517–28.
pubmed: 26194024
pmcid: 4550654
doi: 10.1007/s00134-015-3930-y
Timofeev ICK, Nortje J, Al-Rawi PG, O’Connell MT, Czosnyka M, Smielewski P, Pickard JD, Menon DK, Kirkpatrick PJ, Gupta AK. Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain. 2011;134:484–94.
pubmed: 21247930
doi: 10.1093/brain/awq353
Guilfoyle MRHA, Donnelly J, Stovell MG, Timofeev I, Pickard JD, Czosnyka M, Smielewski P, Menon DK, Carpenter KL, Hutchinson PJ. Characterising the dynamics of cerebral metabolic dysfunction following traumatic brain injury: a microdialysis study in 619 patients. PLoS ONE. 2021;16:e0260291.
pubmed: 34914701
pmcid: 8675704
doi: 10.1371/journal.pone.0260291
Tolias CMRD, Bowery NG, Sgouros S. Extracellular glutamate in the brains of children with severe head injuries: a pilot microdialysis study. Childs Nerv Syst. 2002;18:368–74.
pubmed: 12192496
DA Richards TC, Sgouros S, Bowery NG. Extracellular glutamine to glutamate ratio may predict outcome in the injured brain: a clinical microdialysis study in children. Pharmacol Res. 2003;48:101–9.
pubmed: 12770522
Khellaf AGN, Tajsic T, Alam A, Stovell MG, Killen MJ, Howe DJ, Guilfoyle MR, Jalloh I, Timofeev I, Murphy MP. Focally administered succinate improves cerebral metabolism in traumatic brain injury patients with mitochondrial dysfunction. J Cereb Blood Flow Metab. 2022;42:39–55.
pubmed: 34494481
doi: 10.1177/0271678X211042112
Appavu B, Foldes ST, Adelson PD. Clinical trials for pediatric traumatic brain injury: definition of insanity? J Neurosurg Pediatr. 2019;23:661–9.
pubmed: 31153150
doi: 10.3171/2019.2.PEDS18384
Bell MJ, Adelson P, Wisniewski SR, for the investigators of the ADAPT study. Challenges and opportunities for pediatric severe TBI-review of the evidence and exploring a way forward. Childs Nerv Syst 2017;33:1663–7.