Endothelium dysfunction and thrombosis in COVID-19 with type 2 diabetes.
COVID-19
Diabetes
Endothelial cells
Phosphatidylserine
Thrombosis
Type 2
Journal
Endocrine
ISSN: 1559-0100
Titre abrégé: Endocrine
Pays: United States
ID NLM: 9434444
Informations de publication
Date de publication:
10 2023
10 2023
Historique:
received:
15
01
2023
accepted:
21
06
2023
medline:
29
8
2023
pubmed:
1
7
2023
entrez:
1
7
2023
Statut:
ppublish
Résumé
SARS-CoV-2 can directly or indirectly damage endothelial cells. Endothelial injury, especially phosphatidylserine (PS) exposure on the outer membrane of cells, can more easily promote thrombosis. Type 2 diabetes(T2D) patients were more susceptible to COVID-19, they had more severe symptoms, higher risk of thrombotic complications, and longer duration of post-COVID-19 sequelae. This review provided a detailed overview of the mechanisms underlying endothelial dysfunction in T2D patients with COVID-19 (including long COVID), which may be influenced by hyperglycemia, hypoxia, and pro-inflammatory environments. The mechanisms of thrombosis in T2D patients with COVID-19 are also explored, particularly the effects of increased numbers of PS-exposing particles, blood cells, and endothelial cells on hypercoagulability. Given the high risk of thrombosis in T2D patients with COVID-19, early antithrombotic therapy can both minimize the impact of the disease on patients and maximize the chances of improvement, thereby alleviating patient suffering. We provided detailed guidance on antithrombotic drugs and dosages for mild, moderate, and severe patients, emphasizing that the optimal timing of thromboprophylaxis is a critical factor in influencing prognosis. Considering the potential interactions between antidiabetic, anticoagulant, and antiviral drugs, we proposed practical and comprehensive management recommendations to supplement the incomplete efficacy of vaccines in the diabetic population, reduce the incidence of post-COVID-19 sequelae, and improve patient quality of life.
Identifiants
pubmed: 37392341
doi: 10.1007/s12020-023-03439-y
pii: 10.1007/s12020-023-03439-y
doi:
Substances chimiques
Anticoagulants
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
15-27Subventions
Organisme : National Natural Science Foundation of China
ID : 81970924
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Y. Mahamat-Saleh, T. Fiolet, M.E. Rebeaud, M. Mulot, A. Guihur, D. El Fatouhi et al. Diabetes, hypertension, body mass index, smoking and COVID-19-related mortality: a systematic review and meta-analysis of observational studies. BMJ Open 11(10), e052777 (2021).
pubmed: 34697120
doi: 10.1136/bmjopen-2021-052777
L. Guo, Z. Shi, Y. Zhang, C. Wang, N.C. Do Vale Moreira, H. Zuo et al. Comorbid diabetes and the risk of disease severity or death among 8807 COVID-19 patients in China: a meta-analysis. Diabetes Res. Clin. Pract. 166, 108346 (2020).
pubmed: 32710998
doi: 10.1016/j.diabres.2020.108346
Z.H. Wu, Y. Tang, Q. Cheng, Diabetes increases the mortality of patients with COVID-19: a meta-analysis. Acta Diabetol. 58(2), 139–144 (2021).
pubmed: 32583078
doi: 10.1007/s00592-020-01546-0
S. Schlesinger, M. Neuenschwander, A. Lang, K. Pafili, O. Kuss, C. Herder et al. Risk phenotypes of diabetes and association with COVID-19 severity and death: a living systematic review and meta-analysis. Diabetologia 64(7), 1480–1491 (2021).
pubmed: 33907860
doi: 10.1007/s00125-021-05458-8
P. Gupta, M. Gupta, N. Katoch, K. Garg, B. Garg, A systematic review and meta-analysis of diabetes associated mortality in patients with COVID-19. Int. J. Endocrinol. Metab. 19(4), e113220 (2021).
pubmed: 35069750
doi: 10.5812/ijem.113220
S.A. Bradley, M. Banach, N. Alvarado, I. Smokovski, S.M.M. Bhaskar, Prevalence and impact of diabetes in hospitalized COVID-19 patients: a systematic review and meta-analysis. J. Diabetes 14(2), 144–157 (2022).
pubmed: 34939735
doi: 10.1111/1753-0407.13243
Y. Yang, Z. Cai, J. Zhang, Hyperglycemia at admission is a strong predictor of mortality and severe/critical complications in COVID-19 patients: a meta-analysis. Biosci. Rep. 41(2) (2021).
G. Lazarus, J. Audrey, V.K. Wangsaputra, A. Tamara, D.L. Tahapary, High admission blood glucose independently predicts poor prognosis in COVID-19 patients: a systematic review and dose-response meta-analysis. Diabetes Res. Clin. Pract. 171, 108561 (2021).
pubmed: 33310127
doi: 10.1016/j.diabres.2020.108561
D.R. Handayani, H. Juliastuti, E.N. Nawangsih, Y.Y. Kusmala, I.I. Rakhmat, A. Wibowo et al. Prognostic value of fasting hyperglycemia in patients with COVID-19—diagnostic test accuracy meta-a nalysis. Obes. Med. 23, 100333 (2021).
pubmed: 33842733
doi: 10.1016/j.obmed.2021.100333
B. Cariou, S. Hadjadj, M. Wargny, M. Pichelin, A. Al-Salameh, I. Allix et al. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: the CORONADO study. Diabetologia 63(8), 1500–1515 (2020).
pubmed: 32472191
doi: 10.1007/s00125-020-05180-x
X. Wang, Z. Liu, J. Li, J. Zhang, S. Tian, S. Lu et al. Impacts of type 2 diabetes on disease severity, therapeutic effect, and mortality of patients with COVID-19. J. Clin. Endocrinol. Metab. 105(12), (2020).
E. Terpos, I. Ntanasis-Stathopoulos, I. Elalamy, E. Kastritis, T.N. Sergentanis, M. Politou et al. Hematological findings and complications of COVID-19. Am. J. Hematol. 95(7), 834–847 (2020).
pubmed: 32282949
doi: 10.1002/ajh.25829
A. Słomka, M. Kowalewski, E. Ekanowska, Hemostasis in coronavirus disease 2019-lesson from viscoelastic methods: a systematic review. Thromb. Haemost. 121(9), 1181–1192 (2021).
pubmed: 33401332
doi: 10.1055/a-1346-3178
A. Polimeni, I. Leo, C. Spaccarotella, A. Mongiardo, S. Sorrentino, J. Sabatino et al. Differences in coagulopathy indices in patients with severe versus non-severe COVID-19: a meta-analys is of 35 studies and 6427 patients. Sci. Rep. 11(1), 10464 (2021).
pubmed: 34001992
doi: 10.1038/s41598-021-89967-x
M. Apicella, M.C. Campopiano, M. Mantuano, L. Mazoni, A. Coppelli, S. Del Prato, COVID-19 in people with diabetes: understanding the reasons for worse outcomes. Lancet Diabetes Endocrinol. 8(9), 782–792 (2020).
pubmed: 32687793
doi: 10.1016/S2213-8587(20)30238-2
I. Katsoularis, O. Fonseca-Rodriguez, P. Farrington, H. Jerndal, E.H. Lundevaller, M. Sund et al. Risks of deep vein thrombosis, pulmonary embolism, and bleeding after covid-19: nationwide self-contr olled cases series and matched cohort study. Bmj 377, e069590 (2022).
pubmed: 35387772
doi: 10.1136/bmj-2021-069590
J. Gambardella, G. Santulli, What is linking COVID-19 and endothelial dysfunction? Updates on nanomedicine and bioengineering from the 2020 AHA Scientific Sessions. Eur. Heart J. Cardiovasc. Pharmacother. 7(3), e2–e3 (2021). https://doi.org/10.1093/ehjcvp/pvaa145 .
doi: 10.1093/ehjcvp/pvaa145
pubmed: 33377481
C. Sardu, J. Gambardella, M.B. Morelli, X. Wang, R. Marfella, G. Santulli, Hypertension, thrombosis, kidney failure, and diabetes: is COVID-19 an endothelial disease? A comprehensive evaluation of clinical and basic evidence. J. Clin. Med. 9(5) (2020). https://doi.org/10.3390/jcm9051417 .
M.F. Hogan, R.L. Hull, The islet endothelial cell: a novel contributor to beta cell secretory dysfunction in diabetes. Diabetologia 60(6), 952–959 (2017).
pubmed: 28396983
doi: 10.1007/s00125-017-4272-9
D. Detaille, B. Guigas, C. Chauvin, C. Batandier, E. Fontaine, N. Wiernsperger et al. Metformin prevents high-glucose-induced endothelial cell death through a mitochondrial permeability transition-dependent process. Diabetes 54(7), 2179–2187 (2005).
pubmed: 15983220
doi: 10.2337/diabetes.54.7.2179
S.F. Wu, N. Noren Hooten, D.W. Freeman, N.A. Mode, A.B. Zonderman, M.K. Evans, Extracellular vesicles in diabetes mellitus induce alterations in endothelial cell morphology and migration. J. Transl. Med. 18(1), 230 (2020).
pubmed: 32517700
doi: 10.1186/s12967-020-02398-6
Z. Varga, A.J. Flammer, P. Steiger, M. Haberecker, R. Andermatt, A.S. Zinkernagel et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 395(10234), 1417–1418 (2020).
pubmed: 32325026
doi: 10.1016/S0140-6736(20)30937-5
A. Birnhuber, E. Fließer, G. Gorkiewicz, M. Zacharias, B. Seeliger, S. David et al. Between inflammation and thrombosis: endothelial cells in COVID-19. Eur. Respir. J. 58(3), (2021).
S. Phillips, M.A. Williams, Confronting our next national health disaster—Long-Haul Covid. N. Engl. J. Med. 385(7), 577–579 (2021). https://doi.org/10.1056/NEJMp2109285 .
doi: 10.1056/NEJMp2109285
pubmed: 34192429
P. Venkatesan, Do vaccines protect from long COVID? Lancet Respir. Med. 10(3), e30 (2022).
B.E. Fan, S.W. Wong, C.L.L. Sum, G.H. Lim, B.P. Leung, C.W. Tan et al. Hypercoagulability, endotheliopathy, and inflammation approximating 1 year after recovery: assessing the long-term outcomes in COVID-19 patients. Am. J. Hematol. 97(7), 915–923 (2022).
pubmed: 35477923
doi: 10.1002/ajh.26575
D. Ayoubkhani, K. Khunti, V. Nafilyan, T. Maddox, B. Humberstone, I. Diamond et al. Post-covid syndrome in individuals admitted to hospital with covid-19: retrospective cohort study. BMJ 372, 693 (2021).
doi: 10.1136/bmj.n693
C. Fernández-de-Las-Peñas, C. Guijarro, J. Torres-Macho, M. Velasco-Arribas, S. Plaza-Canteli, V. Hern¨¢ndez-Barrera et al. Diabetes and the risk of long-term post-COVID symptoms. Diabetes 70(12), 2917–2921 (2021).
pubmed: 34580087
doi: 10.2337/db21-0329
Y. Wang, J. Viscarra, S.J. Kim, H.S. Sul, Transcriptional regulation of hepatic lipogenesis. Nat. Rev. Mol. Cell Biol. 16(11), 678–689 (2015).
pubmed: 26490400
doi: 10.1038/nrm4074
Q. Yang, A. Vijayakumar, B.B. Kahn, Metabolites as regulators of insulin sensitivity and metabolism. Nat. Rev. Mol. Cell Biol. 19(10), 654–672 (2018).
pubmed: 30104701
doi: 10.1038/s41580-018-0044-8
E.C. Eringa, E.H. Serne, R.I. Meijer, C.G. Schalkwijk, A.J. Houben, C.D. Stehouwer et al. Endothelial dysfunction in (pre)diabetes: characteristics, causative mechanisms and pathogenic role in type 2 diabetes. Rev. Endocr. Metab. Disord. 14(1), 39–48 (2013). https://doi.org/10.1007/s11154-013-9239-7 .
doi: 10.1007/s11154-013-9239-7
pubmed: 23417760
M. van den Heuvel, O. Sorop, S.J. Koopmans, R. Dekker, R. de Vries, H.M. van Beusekom et al. Coronary microvascular dysfunction in a porcine model of early atherosclerosis and diabetes. Am. J. Physiol. Heart Circ. Physiol. 302(1), H85–H94 (2012). https://doi.org/10.1152/ajpheart.00311.2011 .
doi: 10.1152/ajpheart.00311.2011
pubmed: 21984550
M.H. Roos, E.C. Eringa, W.F. van Rodijnen, T.A. van Lambalgen, P.M. Ter Wee, G.J. Tangelder, Preglomerular and postglomerular basal diameter changes and reactivity to angiotensin II in obese rats. Diabetes Obes. Metab. 10(10), 898–905 (2008). https://doi.org/10.1111/j.1463-1326.2007.00827.x .
doi: 10.1111/j.1463-1326.2007.00827.x
pubmed: 18093213
R.I. Meijer, M.P. De Boer, M.R. Groen, E.C. Eringa, S. Rattigan, E.J. Barrett et al. Insulin-induced microvascular recruitment in skin and muscle are related and both are associated with whole-body glucose uptake. Microcirculation 19(6), 494–500 (2012). https://doi.org/10.1111/j.1549-8719.2012.00174.x .
doi: 10.1111/j.1549-8719.2012.00174.x
pubmed: 22360160
J.S. Yudkin, C.D. Stehouwer, J.J. Emeis, S.W. Coppack, C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler Thromb. Vasc. Biol. 19(4), 972–978 (1999). https://doi.org/10.1161/01.atv.19.4.972 .
doi: 10.1161/01.atv.19.4.972
pubmed: 10195925
K.L. Rensing, J.H. von der Thüsen, E.M. Weijers, F.M. Houttuijn Bloemendaal, G.W. van Lammeren, A. Vink et al. Endothelial insulin receptor expression in human atherosclerotic plaques: linking micro- and macrovascular disease in diabetes? Atherosclerosis 222(1), 208–215 (2012). https://doi.org/10.1016/j.atherosclerosis.2012.01.035 .
doi: 10.1016/j.atherosclerosis.2012.01.035
pubmed: 22341865
A. Natali, E. Toschi, S. Baldeweg, D. Ciociaro, S. Favilla, L. Saccà et al. Clustering of insulin resistance with vascular dysfunction and low-grade inflammation in type 2 diabetes. Diabetes 55(4), 1133–1140 (2006). https://doi.org/10.2337/diabetes.55.04.06.db05-1076 .
doi: 10.2337/diabetes.55.04.06.db05-1076
pubmed: 16567539
A. Bonaventura, A. Vecchiè, L. Dagna, K. Martinod, D.L. Dixon, B.W. Van Tassell, et al., Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat. Rev. Immunol. 21(5), 319–329 (2021).
pubmed: 33824483
doi: 10.1038/s41577-021-00536-9
A.A. Christensen, M. Gannon, The beta cell in type 2 diabetes. Curr. Diabetes Rep. 19(9), 81 (2019). https://doi.org/10.1007/s11892-019-1196-4 .
doi: 10.1007/s11892-019-1196-4
J.E. Campbell, C.B. Newgard, Mechanisms controlling pancreatic islet cell function in insulin secretion. Nat. Rev. Mol. Cell Biol. 22(2), 142–158 (2021). https://doi.org/10.1038/s41580-020-00317-7 .
doi: 10.1038/s41580-020-00317-7
pubmed: 33398164
Y. Imai, K. Kuba, T. Ohto-Nakanishi, J.M. Penninger, Angiotensin-converting enzyme 2 (ACE2) in disease pathogenesis. Circ J. 74(3), 405–410 (2010). https://doi.org/10.1253/circj.cj-10-0045 .
doi: 10.1253/circj.cj-10-0045
pubmed: 20134095
Z. Qin, F. Liu, R. Blair, C. Wang, H. Yang, J. Mudd et al. Endothelial cell infection and dysfunction, immune activation in severe COVID-19. Theranostics 11(16), 8076–8091 (2021). https://doi.org/10.7150/thno.61810 .
doi: 10.7150/thno.61810
pubmed: 34335981
M. Yamaoka-Tojo, Vascular endothelial glycocalyx damage in COVID-19. Int. J. Mol. Sci. 21(24) (2020). https://doi.org/10.3390/ijms21249712 .
N. Chen, M. Zhou, X. Dong, J. Qu, F. Gong, Y. Han et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395(10223), 507–513 (2020).
pubmed: 32007143
doi: 10.1016/S0140-6736(20)30211-7
V.V. Revin, N.A. Klenova, N.V. Gromova, I.P. Grunyushkin, I.N. Solomadin, A.Y. Tychkov et al. Physical and chemical processes and the morphofunctional characteristics of human erythrocytes in hyperglycaemia. Front Physiol. 8, 606 (2017).
pubmed: 28912721
doi: 10.3389/fphys.2017.00606
P.A. Gerber, G.A. Rutter, The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus. Antioxid. Redox Signal 26(10), 501–518 (2017).
pubmed: 27225690
doi: 10.1089/ars.2016.6755
H. Ota, Y. Fujita, M. Yamauchi, S. Muro, H. Kimura, S. Takasawa, Relationship between intermittent hypoxia and type 2 diabetes in sleep apnea syndrome. Int. J. Mol. Sci. 20(19) (2019).
A. Gorelova, M. Berman, I. Al Ghouleh, Endothelial-to-mesenchymal transition in pulmonary arterial hypertension. Antioxid. Redox Signal 34(12), 891–914 (2021). https://doi.org/10.1089/ars.2020.8169 .
doi: 10.1089/ars.2020.8169
pubmed: 32746619
A. Janaszak-Jasiecka, A. Siekierzycka, A. Płoska, I.T. Dobrucki, L. Kalinowski, Endothelial dysfunction driven by hypoxia-the influence of oxygen deficiency on no bioavailability. Biomolecules 11(7) (2021). https://doi.org/10.3390/biom11070982 .
L. Ma, S.K. Sahu, M. Cano, V. Kuppuswamy, J. Bajwa, J. McPhatter et al. Increased complement activation is a distinctive feature of severe SARS-CoV-2 infection. Sci. Immunol. 6(59) (2021).
M. Cugno, P.L. Meroni, R. Gualtierotti, S. Griffini, E. Grovetti, A. Torri et al. Complement activation and endothelial perturbation parallel COVID-19 severity and activity. J. Autoimmun. 116, 102560 (2021).
pubmed: 33139116
doi: 10.1016/j.jaut.2020.102560
P. Skendros, A. Mitsios, A. Chrysanthopoulou, D.C. Mastellos, S. Metallidis, P. Rafailidis et al. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J. clin. invest 130(11), 6151–6157 (2020).
pubmed: 32759504
doi: 10.1172/JCI141374
H. Su, M. Yang, C. Wan, L.X. Yi, F. Tang, H.Y. Zhu et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 98(1), 219–227 (2020).
pubmed: 32327202
doi: 10.1016/j.kint.2020.04.003
Z. Li, W. Zhang, F. Gao, Q. Tang, D. Kang, Y. Shen, Different complement activation pathways underly cognitive impairment and type 2 diabetes mellitus combined with cognitive impairment. Front. Aging Neurosci. 14, 810335 (2022).
pubmed: 35370615
doi: 10.3389/fnagi.2022.810335
Y. Zhao, M. Wang, B. Meng, Y. Gao, Z. Xue, M. He et al. Identification of dysregulated complement activation pathways driven by N-glycosylation alterations in T2D patients. Front. Chem. 9, 677621 (2021).
pubmed: 34178943
doi: 10.3389/fchem.2021.677621
Y. Jiang, G. Zhao, N. Song, P. Li, Y. Chen, Y. Guo et al. Blockade of the C5a-C5aR axis alleviates lung damage in hDPP4-transgenic mice infected with MERS-CoV. Emerg. Microbes Infect. 7(1), 77 (2018).
pubmed: 29691378
doi: 10.1038/s41426-018-0063-8
K.K. Sahu, R. Kumar, Current perspective on pandemic of COVID-19 in the United States. J. Fam. Med Prim. Care 9(4), 1784–1791 (2020).
doi: 10.4103/jfmpc.jfmpc_424_20
S. Timmermans, M.A. Abdul-Hamid, J. Potjewijd, R. Theunissen, J. Damoiseaux, C.P. Reutelingsperger et al. C5b9 formation on endothelial cells reflects complement defects among patients with renal thrombotic microangiopathy and severe hypertension. J. Am. Soc. Nephrol. 29(8), 2234–2243 (2018).
pubmed: 29858281
doi: 10.1681/ASN.2018020184
X. Wang, K.K. Sahu, J. Cerny, Coagulopathy, endothelial dysfunction, thrombotic microangiopathy and complement activation: potential role of complement system inhibition in COVID-19. J. Thromb. Thromb. 51(3), 657–662 (2021).
doi: 10.1007/s11239-020-02297-z
G.C. Yen, H.Y. Chen, Relationship between antimutagenic activity and major components of various teas. Mutagenesis 11(1), 37–41 (1996). https://doi.org/10.1093/mutage/11.1.37 .
doi: 10.1093/mutage/11.1.37
pubmed: 8671713
R. Amraei, N. Rahimi, COVID-19, Renin-angiotensin system and endothelial dysfunction. Cells 9(7) (2020). https://doi.org/10.3390/cells9071652 .
P.A. Leventis, S. Grinstein, The distribution and function of phosphatidylserine in cellular membranes. Annu. Rev. Biophys. 39, 407–427 (2010). PubMed PMID: 20192774.
pubmed: 20192774
doi: 10.1146/annurev.biophys.093008.131234
T. Yeung, G.E. Gilbert, J. Shi, J. Silvius, A. Kapus, S. Grinstein, Membrane phosphatidylserine regulates surface charge and protein localization. Science 319(5860), 210–213 (2008).
pubmed: 18187657
doi: 10.1126/science.1152066
J. Shi, Y. Shi, L.N. Waehrens, J.T. Rasmussen, C.W. Heegaard, G.E. Gilbert, Lactadherin detects early phosphatidylserine exposure on immortalized leukemia cells undergoing progr ammed cell death. Cytometry A 69(12), 1193–1201 (2006).
pubmed: 17123296
doi: 10.1002/cyto.a.20345
E.C. Reddy, M.L. Rand, Procoagulant phosphatidylserine-exposing platelets in vitro and in vivo. Front. Cardiovasc. Med. 7, 15 (2020). https://doi.org/10.3389/fcvm.2020.00015 .
doi: 10.3389/fcvm.2020.00015
pubmed: 32195268
Z. He, Y. Zhang, M. Cao, R. Ma, H. Meng, Z. Yao et al. Increased phosphatidylserine-exposing microparticles and their originating cells are associated with the coagulation process in patients with IgA nephropathy. Nephrol. Dial. Transpl. 31(5), 747–759 (2016).
doi: 10.1093/ndt/gfv403
F. Prattichizzo, V. De Nigris, J. Sabbatinelli, A. Giuliani, C. Castaño, M. Párrizas et al. CD31(+) Extracellular vesicles from patients with type 2 diabetes shuttle a miRNA signature associated with cardiovascular complications. Diabetes 70(1), 240–254 (2021). https://doi.org/10.2337/db20-0199 .
doi: 10.2337/db20-0199
pubmed: 33097483
J.F. Allen, B. Thake, W.F. Martin, Nitrogenase inhibition limited oxygenation of Earth’s proterozoic atmosphere. Trends Plant Sci. 24(11), 1022–1031 (2019). https://doi.org/10.1016/j.tplants.2019.07.007 .
doi: 10.1016/j.tplants.2019.07.007
pubmed: 31447302
J. Gambardella, U. Kansakar, C. Sardu, V. Messina, S.S. Jankauskas, R.Marfella, et al., Exosomal miR-145 and miR-885 regulate thrombosis in COVID-19. J. Pharmacol. Exp. Ther. 384(1), 109–115 (2023). https://doi.org/10.1124/jpet.122.001209
doi: 10.1124/jpet.122.001209
pubmed: 35772782
J. Gambardella, A. Coppola, R. Izzo, G. Fiorentino, B. Trimarco, G. Santulli, Role of endothelial miR-24 in COVID-19 cerebrovascular events. Crit. Care 25(1), 306 (2021). https://doi.org/10.1186/s13054-021-03731-1 .
doi: 10.1186/s13054-021-03731-1
pubmed: 34433473
P. Mone, J. Gambardella, X. Wang, S.S. Jankauskas, A. Matarese, G. Santulli, miR-24 targets the transmembrane glycoprotein neuropilin-1 in human brain microvascular endothelial cells. Non-coding RNA 7(1) (2021). https://doi.org/10.3390/ncrna7010009 .
U. Kansakar, J. Gambardella, F. Varzideh, R. Avvisato, S.S. Jankauskas, P. Mone, et al. miR-142 targets TIM-1 in human endothelial cells: potential implications for stroke, COVID-19, Zika, Ebola, Dengue, and other viral infections. Int. J. Mol. Sci. 23(18) (2022). https://doi.org/10.3390/ijms231810242 .
H.E. Davis, L. McCorkell, J.M. Vogel, E.J. Topol, Long COVID: major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 21(3), 133–146 (2023). https://doi.org/10.1038/s41579-022-00846-2 .
doi: 10.1038/s41579-022-00846-2
pubmed: 36639608
D. Castanares-Zapatero, P. Chalon, L. Kohn, M. Dauvrin, J. Detollenaere, C. Maertens de Noordhout et al. Pathophysiology and mechanism of long COVID: a comprehensive review. Ann. Med. 54(1), 1473–1487 (2022). https://doi.org/10.1080/07853890.2022.2076901 .
doi: 10.1080/07853890.2022.2076901
pubmed: 35594336
H. Crook, S. Raza, J. Nowell, M. Young, P. Edison, Long covid-mechanisms, risk factors, and management. BMJ 374, n1648 (2021). https://doi.org/10.1136/bmj.n1648 . Epub 2021/07/28PubMed PMID: 34312178.
doi: 10.1136/bmj.n1648
pubmed: 34312178
C. Sardu, G. Gargiulo, G. Esposito, G. Paolisso, R. Marfella, Impact of diabetes mellitus on clinical outcomes in patients affected by Covid-19. Cardiovasc Diabetol. 19(1), 76 (2020).
pubmed: 32527257
doi: 10.1186/s12933-020-01047-y
X. Yang, X. Cheng, Y. Tang, X. Qiu, Y. Wang, H. Kang et al. Bacterial endotoxin activates the coagulation cascade through gasdermin D-dependent phosphatidylserin e exposure. Immunity 51(6), 983–996.e6 (2019).
pubmed: 31836429
doi: 10.1016/j.immuni.2019.11.005
J.E. Vance, R. Steenbergen, Metabolism and functions of phosphatidylserine. Prog. Lipid Res 44(4), 207–234 (2005).
pubmed: 15979148
doi: 10.1016/j.plipres.2005.05.001
J.E. Gómez-Mesa, S. Galindo-Coral, M.C. Montes, A.J. Muñoz Martin, Thrombosis and coagulopathy in COVID-19. Curr. Probl. Cardiol. 46(3), 100742 (2021). https://doi.org/10.1016/j.cpcardiol.2020.100742 .
doi: 10.1016/j.cpcardiol.2020.100742
pubmed: 33243440
M.A.M. Ali, S.A. Spinler, COVID-19 and thrombosis: from bench to bedside. Trends Cardiovasc. Med. 31(3), 143–160 (2021). https://doi.org/10.1016/j.tcm.2020.12.004 .
doi: 10.1016/j.tcm.2020.12.004
pubmed: 33338635
Z. Hassan-Smith, W. Hanif, K. Khunti, Who should be prioritised for COVID-19 vaccines? Lancet 396(10264), 1732–1733 (2020).
pubmed: 33125934
doi: 10.1016/S0140-6736(20)32224-8
A.C. Powers, D.M. Aronoff, R.H. Eckel, COVID-19 vaccine prioritisation for type 1 and type 2 diabetes. Lancet Diabetes Endocrinol. 9(3), 140–141 (2021).
pubmed: 33476583
doi: 10.1016/S2213-8587(21)00017-6
D.M. Altmann, R.J. Boyton, COVID-19 vaccination: the road ahead. Science 375(6585), 1127–1132 (2022).
pubmed: 35271316
doi: 10.1126/science.abn1755
D.R. Feikin, M.M. Higdon, L.J. Abu-Raddad, N. Andrews, R. Araos, Y. Goldberg et al. Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: results of a systematic review and meta-regression. Lancet 399(10328), 924–944 (2022).
pubmed: 35202601
doi: 10.1016/S0140-6736(22)00152-0
M. Voysey, S.A. Costa Clemens, S.A. Madhi, L.Y. Weckx, P.M. Folegatti, P.K. Aley et al. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet 397(10277), 881–891 (2021).
pubmed: 33617777
doi: 10.1016/S0140-6736(21)00432-3
J.A. Tomalka, M.S. Suthar, S.G. Deeks, R.P. Sekaly, Fighting the SARS-CoV-2 pandemic requires a global approach to understanding the heterogeneity of vac cine responses. Nat. Immunol. 23(3), 360–370 (2022).
pubmed: 35210622
doi: 10.1038/s41590-022-01130-4
E. Murillo-Zamora, R. Sánchez-Piña, X. Trujillo, M. Huerta, M. Ríos-Silva, O. Mendoza-Cano, Independent risk factors of COVID-19 pneumonia in vaccinated Mexican adults. Int. J. Infect. Dis. 118, 244–246 (2022). https://doi.org/10.1016/j.ijid.2022.02.003 .
L.D. Monti, M.C. Casiraghi, E. Setola, E. Galluccio, M.A. Pagani, L. Quaglia et al. L-arginine enriched biscuits improve endothelial function and glucose metabolism: a pilot study in healthy subjects and a cross-over study in subjects with impaired glucose tolerance and metabolic syndrome. Metabolism 62(2), 255–264 (2013). https://doi.org/10.1016/j.metabol.2012.08.004 .
doi: 10.1016/j.metabol.2012.08.004
pubmed: 23040413
J.T. Mammedova, A.V. Sokolov, I.S. Freidlin, E.A. Starikova, The mechanisms of L-arginine metabolism disorder in endothelial cells. Biochem. Biokhimiia 86(2), 146–155 (2021). https://doi.org/10.1134/s0006297921020036 .
doi: 10.1134/s0006297921020036
V. Trimarco, R. Izzo, A. Lombardi, A. Coppola, G. Fiorentino, G. Santulli, Beneficial effects of L-Arginine in patients hospitalized for COVID-19: new insights from a randomized clinical trial. Pharm. Res. 191, 106702 (2023). https://doi.org/10.1016/j.phrs.2023.106702 .
doi: 10.1016/j.phrs.2023.106702
G. Fiorentino, A. Coppola, R. Izzo, A. Annunziata, M. Bernardo, A. Lombardi et al. Effects of adding L-arginine orally to standard therapy in patients with COVID-19: a randomized, double-blind, placebo-controlled, parallel-group trial. Results of the first interim analysis. EClinicalMedicine 40, 101125 (2021). https://doi.org/10.1016/j.eclinm.2021.101125 .
doi: 10.1016/j.eclinm.2021.101125
pubmed: 34522871
R. Tepaske, H. Velthuis, H.M. Oudemans-van Straaten, S.H. Heisterkamp, S.J. van Deventer, C. Ince et al. Effect of preoperative oral immune-enhancing nutritional supplement on patients at high risk of infection after cardiac surgery: a randomised placebo-controlled trial. Lancet 358(9283), 696–701 (2001). https://doi.org/10.1016/s0140-6736(01)05836-6 .
doi: 10.1016/s0140-6736(01)05836-6
pubmed: 11551575
A. Adebayo, F. Varzideh, S. Wilson, J. Gambardella, M. Eacobacci, S.S. Jankauskas, et al. l-Arginine and COVID-19: an update. Nutrients 13(11) (2021). https://doi.org/10.3390/nu13113951 .
J.H. Chow, A. Rahnavard, M. Gomberg-Maitland, R. Chatterjee, P. Patodi, D.P. Yamane et al. Association of early aspirin use with in-hospital mortality in patients with moderate COVID-19. JAMA Netw Open. 5(3), e223890 (2022).
A. Corcillo, M.B. Whyte, P. Vas, J. Karalliedde, Microvascular disease in diabetes and severe COVID-19 outcomes. Lancet Diabetes Endocrinol. 9(4), 200–201 (2021).
pubmed: 33740436
doi: 10.1016/S2213-8587(21)00053-X
M.M.F. Qadir, M. Bhondeley, W. Beatty, D.D. Gaupp, L.A. Doyle-Meyers, T. Fischer, et al. SARS-CoV-2 infection of the pancreas promotes thrombofibrosis and is associated with new-onset diabet es. JCI Insight 6(16) (2021).
C. Guillermo-Esposito, P. Casais, G. Cesarman-Maus, F. Andrade-Orsi, R. Martínez-Rovira, J.C. de-Campos-Guerra, et al., Guidelines for prophylaxis and anti-thrombotic treatment for patients with COVID-19. Consensus of the Latin American Cooperative Group on Hemostasis and Thrombosis (CLAHT). Arch. Cardiol. Mex. 91(Suplemento COVID), 047–054 (2021).
pubmed: 33459726
A. Cuker, E.K. Tseng, R. Nieuwlaat, P. Angchaisuksiri, C. Blair, K. Dane et al. American Society of Hematology 2021 guidelines on the use of anticoagulation for thromboprophylaxis i n patients with COVID-19. Blood Adv. 5(3), 872–888 (2021).
pubmed: 33560401
doi: 10.1182/bloodadvances.2020003763
A. Cuker, E.K. Tseng, R. Nieuwlaat, P. Angchaisuksiri, C. Blair, K. Dane et al. American Society of Hematology living guidelines on the use of anticoagulation for thromboprophylaxis in patients with COVID-19: May 2021 update on the use of intermediate-intensity anticoagulation in critically ill patients. Blood Adv. 5(20), 3951–3959 (2021).
pubmed: 34474482
doi: 10.1182/bloodadvances.2021005493
V. Jongkind, J.J. Earnshaw, F. Bastos Gonçalves, F. Cochennec, E.S. Debus, R. Hinchliffe et al. Editor’s Choice—Update of the European Society for Vascular Surgery (ESVS) 2020 Clinical Practice Guidelines on the Management of Acute Limb Ischaemia in Light of the COVID-19 Pandemic, based on a scoping review of the literature. Eur. J. Vasc. Endovasc. Surg. 63(1), 80–89 (2022).
pubmed: 34686452
doi: 10.1016/j.ejvs.2021.08.028
A. Cuker, E.K. Tseng, R. Nieuwlaat, P. Angchaisuksiri, C. Blair, K. Dane et al. American Society of Hematology living guidelines on the use of anticoagulation for thromboprophylaxis in patients with COVID-19: July 2021 update on postdischarge thromboprophylaxis. Blood Adv. 6(2), 664–671 (2022).
pubmed: 34727173
doi: 10.1182/bloodadvances.2021005945
S. Kluge, J.J. Malin, F. Fichtner, O.J. Müller, N. Skoetz, C. Karagiannidis, et al., Clinical Practice Guideline: recommendations on the In-hospital treatment of patients with COVID-19. Dtsch Arztebl Int. 118(50), 865–871 (2021).
pubmed: 34789365
A.C. Spyropoulos, J.H. Levy, W. Ageno, J.M. Connors, B.J. Hunt, T. Iba et al. Scientific and Standardization Committee communication: clinical guidance on the diagnosis, prevention, and treatment of venous thromboembolism in hospitalized patients with COVID-19. J. Thromb. Haemost. 18(8), 1859–1865 (2020).
pubmed: 32459046
doi: 10.1111/jth.14929
U.S. Perepu, I. Chambers, A. Wahab, P. Ten Eyck, C. Wu, S. Dayal et al. Standard prophylactic versus intermediate dose enoxaparin in adults with severe COVID-19: A multi-cen ter, open-label, randomized controlled trial. J. Thromb. Haemost. 19(9), 2225–2234 (2021).
pubmed: 34236768
doi: 10.1111/jth.15450
I. Investigators, P. Sadeghipour, A.H. Talasaz, F. Rashidi, B. Sharif-Kashani, M.T. Beigmohammadi et al. Effect of intermediate-dose vs standard-dose prophylactic anticoagulation on thrombotic events, extra corporeal membrane oxygenation treatment, or mortality among patients With COVID-19 admitted to the intensive care unit: the INSPIRATION randomized clinical trial. JAMA 325(16), 1620–1630 (2021).
doi: 10.1001/jama.2021.4152
A. Kollias, G. Poulakou, E. Dimakakos, K.G. Kyriakoulis, K. Syrigos, Thromboprophylaxis in COVID-19: Early initiation might be as important as optimal dosing. Thromb. Res. 204, 134–135 (2021).
pubmed: 34144797
doi: 10.1016/j.thromres.2021.06.004
L.A. Courtney, T.C. Trujillo, J.J. Saseen, G. Wright, S. Palkimas, Evaluation of the clinical impact of thromboprophylaxis in patients with COVID-19 following hospital discharge. Ann. Pharmacother. 10600280211064306 (2022).
M. Levi, J. Thachil, T. Iba, J.H. Levy, Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 7(6), e438–e440 (2020). PubMed PMID: 32407672.
pubmed: 32407672
doi: 10.1016/S2352-3026(20)30145-9
M.B. Rothberg, P.S. Pekow, M. Lahti, P.K. Lindenauer, Comparative effectiveness of low-molecular-weight heparin versus unfractionated heparin for thromboem bolism prophylaxis for medical patients. J. Hosp. Med. 7(6), 457–463 (2012).
pubmed: 22473716
doi: 10.1002/jhm.1938
A. Investigators, A.C.-A. Investigators, R.-C. Investigators, P.R. Lawler, E.C. Goligher, J.S. Berger et al. Therapeutic anticoagulation with heparin in noncritically Ill patients with Covid-19. N. Engl. J. Med. 385(9), 790–802 (2021).
doi: 10.1056/NEJMoa2105911
M. Marcos-Jubilar, F. Carmona-Torre, R. Vidal, P. Ruiz-Artacho, D. Filella, C. Carbonell et al. Therapeutic versus prophylactic bemiparin in hospitalized patients with nonsevere COVID-19 pneumonia (BEMICOP Study): an open-label, multicenter, randomized, controlled trial. Thromb. Haemost. 122(2), 295–299 (2022).
pubmed: 34638151
doi: 10.1055/a-1667-7534
N. Morici, G. Podda, S. Birocchi, L. Bonacchini, M. Merli, M. Trezzi et al. Enoxaparin for thromboprophylaxis in hospitalized COVID-19 patients: the X-COVID-19 randomized trial. Eur. J. Clin. Investig. 52(5), e13735 (2022). PubMed PMID: 34958123.
doi: 10.1111/eci.13735
B. Bikdeli, A.H. Talasaz, F. Rashidi, H. Bakhshandeh, F. Rafiee, P. Rezaeifar et al. Intermediate-dose versus standard-dose prophylactic anticoagulation in patients with COVID-19 admitte d to the intensive care unit: 90-day results from the INSPIRATION randomized trial. Thromb. Haemost. 122(1), 131–141 (2022).
pubmed: 33865239
doi: 10.1055/a-1485-2372
M. Sholzberg, G.H. Tang, H. Rahhal, M. AlHamzah, L.B. Kreuziger, F.N. inle et al. Effectiveness of therapeutic heparin versus prophylactic heparin on death, mechanical ventilation, or intensive care unit admission in moderately ill patients with covid-19 admitted to hospital: RAPID randomised clinical trial. BMJ 375, n2400 (2021).
pubmed: 34649864
doi: 10.1136/bmj.n2400
A.C. Spyropoulos, M. Goldin, D. Giannis, W. Diab, J. Wang, S. Khanijo et al. Efficacy and safety of therapeutic-dose heparin vs standard prophylactic or intermediate-dose heparins for thromboprophylaxis in high-risk hospitalized patients with COVID-19: the HEP-COVID randomized clinical trial. JAMA Intern. Med. 181(12), 1612–1620 (2021).
pubmed: 34617959
doi: 10.1001/jamainternmed.2021.6203
S. Susen, C.A. Tacquard, A. Godon, A. Mansour, D. Garrigue, P. Nguyen et al. Prevention of thrombotic risk in hospitalized patients with COVID-19 and hemostasis monitoring. Crit. Care 24(1), 364 (2020).
pubmed: 32560658
doi: 10.1186/s13054-020-03000-7
D. Poli, E. Antonucci, L. Bertù, E. Vignini, L. Ruocco, D. Mastroiacovo et al. Very elderly patients with venous thromboembolism on oral anticoagulation with VKAs or DOACs: results from the prospective multicenter START2-register study. Thromb. Res. 183, 28–32 (2019).
pubmed: 31536872
doi: 10.1016/j.thromres.2019.08.024
A. Cipriano, N. Park, A. Pecori, A. Bionda, M. Bardini, F. Frassi, et al. Predictors of post-traumatic complication of mild brain injury in anticoagulated patients: DOACs are? Safer than VKAs. Intern. Emerg. Med. 16(8), 2319–2321 (2021).
D. Kumar, V. Kaimaparambil, S. Chandralekha, J. Lalchandani, Oral rivaroxaban in the prophylaxis of COVID-19 induced coagulopathy. J. Assoc. Physicians 70(2), 11–12 (2022).
E. Ramacciotti, L. Barile Agati, D. Calderaro, V.C.R. Aguiar, A.C. Spyropoulos, C.C.C. de Oliveira et al. Rivaroxaban versus no anticoagulation for post-discharge thromboprophylaxis after hospitalisation for COVID-19 (MICHELLE): an open-label, multicentre, randomised, controlled trial. Lancet 399(10319), 50–59 (2022).
pubmed: 34921756
doi: 10.1016/S0140-6736(21)02392-8
N. Mackman, W. Bergmeier, G.A. Stouffer, J.I. Weitz, Therapeutic strategies for thrombosis: new targets and approaches. Nat. Rev. Drug Discov. 19(5), 333–352 (2020). PubMed PMID: 32132678
pubmed: 32132678
doi: 10.1038/s41573-020-0061-0
G. Ferrante, M. Valgimigli, P. Pagnotta, P. Presbitero, Bivalirudin versus heparin in patients with acute myocardial infarction: a meta-analysis of randomize d trials. Catheter Cardiovasc. Int. 86(3), 378–389 (2015).
doi: 10.1002/ccd.25955
M. Mancuso, D.L. Lauretti, N. Cecconi, M. Santini, V. Lami, G. Orlandi et al. Arterial intracranial thrombosis as the first manifestation of vaccine-induced immune thrombotic thro mbocytopenia (VITT): a case report. Neurol. Sci. 43(3), 2085–2089 (2022).
pubmed: 35022931
doi: 10.1007/s10072-021-05800-3
L. Mirandola, G. Arena, M. Pagliaro, A. Boghi, A. Naldi, D. Castellano et al. Massive cerebral venous sinus thrombosis in vaccine-induced immune thrombotic thrombocytopenia after ChAdOx1 nCoV-19 serum: case report of a successful multidisciplinary approach. Neurol. Sci. 43(3), 1499–1502 (2022).
pubmed: 35001190
doi: 10.1007/s10072-021-05805-y
E. Pang, S. Ghosh, T. Chemmanam, C. Grove, T. Phillips, Cerebral arterial and venous thrombosis due to COVID-19 vaccine-induced immune thrombotic thrombocyto penia. BMJ Case Rep. 15(1) (2022).
S. Yamada, H. Asakura, Coagulopathy and fibrinolytic pathophysiology in COVID-19 and SARS-CoV-2 vaccination. Int. J. Mol. Sci. 23(6) (2022).
B.D. Bissell, T. Gabbard, E.A. Sheridan, M.A. Baz, G.A. Davis, A. Ather, Evaluation of bivalirudin as the primary anticoagulant in patients receiving extracorporeal membrane oxygenation for SARS-CoV-2-associated acute respiratory failure. Ann. Pharmacother. 56(4), 387–392 (2022).
pubmed: 34323121
doi: 10.1177/10600280211036151
T.G. Seelhammer, P. Rowse, S. Yalamuri, Bivalirudin for maintenance anticoagulation during venovenous extracorporeal membrane oxygenation for COVID-19. J. Cardiothorac. Vasc. Anesth. 35(4), 1149–1153 (2021).
pubmed: 32660924
doi: 10.1053/j.jvca.2020.06.059
R. Trigonis, N. Smith, S. Porter, E. Anderson, M. Jennings, R. Kapoor et al. Efficacy of bivalirudin for therapeutic anticoagulation in COVID-19 patients requiring ECMO support. J. Cardiothorac. Vasc. Anesth. 36(2), 414–418 (2022).
pubmed: 34782234
doi: 10.1053/j.jvca.2021.10.026
D.J. Angiolillo, E. Bernardo, D. Capodanno, D. Vivas, M. Sabaté, J.L. Ferreiro et al. Impact of chronic kidney disease on platelet function profiles in diabetes mellitus patients with cor onary artery disease taking dual antiplatelet therapy. J. Am. Coll. Cardiol. 55(11), 1139–1146 (2010).
pubmed: 20223369
doi: 10.1016/j.jacc.2009.10.043
R.-C.W.CftR.-C. Investigators, C.A. Bradbury, P.R. Lawler, S.J. Stanworth, B.J. McVerry, Z. McQuilten et al. Effect of antiplatelet therapy on survival and organ support-free days in critically Ill patients with COVID-19: a randomized clinical trial. JAMA 327(13), 1247–1259 (2022).
doi: 10.1001/jama.2022.2910
J.S. Berger, L.Z. Kornblith, M.N. Gong, H.R. Reynolds, M. Cushman, Y. Cheng et al. Effect of P2Y12 inhibitors on survival free of organ support among non-critically Ill hospitalized patients with COVID-19: a randomized clinical trial. JAMA 327(3), 227–236 (2022).
pubmed: 35040887
doi: 10.1001/jama.2021.23605
P. Apparicio, M. Abdelmajid, M. Riva, R. Shearmur, Comparing alternative approaches to measuring the geographical accessibility of urban health services: distance types and aggregation-error issues. Int. J. Health Geogr. 7, 7 (2008).
pubmed: 18282284
doi: 10.1186/1476-072X-7-7
C. Steenblock, P.E.H. Schwarz, B. Ludwig, A. Linkermann, P. Zimmet, K. Kulebyakin et al. COVID-19 and metabolic disease: mechanisms and clinical management. Lancet Diabetes Endocrinol. 9(11), 786–798 (2021). https://doi.org/10.1016/s2213-8587(21)00244-8 . Epub 2021/10/08PubMed PMID: 34619105; PubMed Central PMCID: PMCPMC8489878 receiving grants for investigator-initiated studies for AstraZeneca, Novartis, Novo Nordisk, Sanofi-Aventis, Lilly and Merck Sharp & Dohme, Boehringer Ingelheim, Bayer, Berlin-Chemie AG–Menarini Group, Janssen, and Napp. JSS reports personal fees as a consultant or advisor for Abvance, Adocia, Astra-Zeneca, Avotres, Bayer, Biozeus, Boehringer-Ingelheim, Dalcor, Dance Biopharm–Aerami Therapeutics, Diavacs, Duologics, Elcelyx, Eli Lilly, Enthera, Esperion, Geneuro, Ideal Life, Imcyse, Immunomolecular Therapeutics, Intarcia, Kamada, Kriya, Moerae Matrix, Novo-Nordisk, Oramed, Orgenesis, Pila Pharma, Precigen ActoBiotics, Preziba/Signos, Provention Bio, Sanofi, Tolerion, Valeritas, Viacyte, Viela Bio, vTv Therapeutics, and Zafgen. JHDV reports personal fees as consultant or advisor for Adocia, Novo Nordisk, and Zealand. ER reports personal fees as consultant or advisor for Abbott, Air Liquide, AstraZeneca, Boehringer-Ingelheim, Cellnovo, Dexcom, Eli Lilly, Insulet, Johnson & Johnson (Animas, LifeScan), Medirio, Medtronic, Novo Nordisk, Roche Diagnostics, Sanofi-Aventis, and Tandem; and research grant or material support from Abbott, Dexcom, Insulet, Roche Diagnostics, and Tandem. BG reports personal fees as consultant or advisor for Novo Nordisk, Pfizer, Merck Sharp & Dohme, Astra Zeneca, and Takeda. FR reports personal fees as a consultant or advisor for Ethicon, Medtronic, and Novo Nordisk. All other authors declare no competing interests.
doi: 10.1016/s2213-8587(21)00244-8
pubmed: 34619105
R. Krysiak, B. Okopien, Haemostatic effects of metformin in simvastatin-treated volunteers with impaired fasting glucose. Basic Clin. Pharmacol. Toxicol. 111(6), 380–384 (2012). https://doi.org/10.1111/j.1742-7843.2012.00913.x .
doi: 10.1111/j.1742-7843.2012.00913.x
pubmed: 22716204
H.A. Machado, M. Vieira, M.R. Cunha, M.R. Correia, R.T. Fukui, R.F. Santos et al. Metformin, but not glimepiride, improves carotid artery diameter and blood flow in patients with type 2 diabetes mellitus. Clinics 67(7), 711–717 (2012). https://doi.org/10.6061/clinics/2012(07)03 .
doi: 10.6061/clinics/2012(07)03
pubmed: 22892913
C. Erem, H.M. Ozbas, I. Nuhoglu, O. Deger, N. Civan, H.O. Ersoz, Comparison of effects of gliclazide, metformin and pioglitazone monotherapies on glycemic control and cardiovascular risk factors in patients with newly diagnosed uncontrolled type 2 diabetes mellitus. Exp. Clin. Endocrinol. Diabetes 122(5), 295–302 (2014). https://doi.org/10.1055/s-0034-1370989 .
doi: 10.1055/s-0034-1370989
pubmed: 24710641
L. Song, X. Wang, M. Ouyang, L. Sun, X. Chen, H. Arima et al. Associations of an abnormal physiological score with outcomes in acute intracerebral hemorrhage: INTERACT2 study. Stroke 52(2), 722–725 (2021). https://doi.org/10.1161/strokeaha.120.030435 .
doi: 10.1161/strokeaha.120.030435
pubmed: 33423518
K. Oshakbayev, B. Bimbetov, K. Manekenova, G. Bedelbayeva, K. Mustafin, B. Dukenbayeva, Severe nonalcoholic steatohepatitis and type 2 diabetes: liver histology after weight loss therapy in a randomized clinical trial. Curr. Med. Res. Opin. 35(1), 157–165 (2019). https://doi.org/10.1080/03007995.2018.1547696 .
doi: 10.1080/03007995.2018.1547696
pubmed: 30431378
R. Nankar, P.K. Prabhakar, M. Doble, Hybrid drug combination: combination of ferulic acid and metformin as anti-diabetic therapy. Phytomed.: Int. J. Phytother. Phytopharmacol. 37, 10–13 (2017). https://doi.org/10.1016/j.phymed.2017.10.015 .
doi: 10.1016/j.phymed.2017.10.015
S.Y.M. Lim, B. Al Bishtawi, W. Lim, Role of cytochrome P450 2C9 in COVID-19 treatment: current status and future directions. Eur. J. Drug Metab. Pharmacokinet. 48(3), 221–240 (2023). https://doi.org/10.1007/s13318-023-00826-8 .
doi: 10.1007/s13318-023-00826-8
pubmed: 37093458