Urinary Tract Infections: Renal Intercalated Cells Protect against Pathogens.
Journal
Journal of the American Society of Nephrology : JASN
ISSN: 1533-3450
Titre abrégé: J Am Soc Nephrol
Pays: United States
ID NLM: 9013836
Informations de publication
Date de publication:
01 10 2023
01 10 2023
Historique:
received:
19
01
2023
accepted:
22
06
2023
pmc-release:
01
10
2024
medline:
11
10
2023
pubmed:
4
7
2023
entrez:
4
7
2023
Statut:
ppublish
Résumé
Urinary tract infections affect more than 1 in 2 women during their lifetime. Among these, more than 10% of patients carry antibiotic-resistant bacterial strains, highlighting the urgent need to identify alternative treatments. While innate defense mechanisms are well-characterized in the lower urinary tract, it is becoming evident that the collecting duct (CD), the first renal segment encountered by invading uropathogenic bacteria, also contributes to bacterial clearance. However, the role of this segment is beginning to be understood. This review summarizes the current knowledge on CD intercalated cells in urinary tract bacterial clearance. Understanding the innate protective role of the uroepithelium and of the CD offers new opportunities for alternative therapeutic strategies.
Identifiants
pubmed: 37401780
doi: 10.1681/ASN.0000000000000187
pii: 00001751-202310000-00004
pmc: PMC10561816
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1605-1614Subventions
Organisme : CIHR
ID : PS 168871
Pays : Canada
Informations de copyright
Copyright © 2023 by the American Society of Nephrology.
Références
Wagenlehner FME, Bjerklund Johansen TE, Cai T, et al. Epidemiology, definition and treatment of complicated urinary tract infections. Nat Rev Urol. 2020;17(10):586–600. doi: 10.1038/s41585-020-0362-4
doi: 10.1038/s41585-020-0362-4
Geerlings SE. Clinical presentations and epidemiology of urinary tract infections. Microbiol Spectr. 2016;4(5). doi: 10.1128/microbiolspec.uti-0002-2012
doi: 10.1128/microbiolspec.uti-0002-2012
Ronald A. The etiology of urinary tract infection: traditional and emerging pathogens. Dis Mon. 2003;49(2):71–82. doi: 10.1067/mda.2003.8
doi: 10.1067/mda.2003.8
Desforges JF, Stamm WE, Hooton TM. Management of urinary tract infections in adults. N Engl J Med. 1993;329(18):1328–1334. doi: 10.1056/nejm199310283291808
doi: 10.1056/nejm199310283291808
Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015;13(5):269–284. doi: 10.1038/nrmicro3432
doi: 10.1038/nrmicro3432
Lacerda Mariano L, Ingersoll MA. The immune response to infection in the bladder. Nat Rev Urol. 2020;17(8):439–458. doi: 10.1038/s41585-020-0350-8
doi: 10.1038/s41585-020-0350-8
Abraham SN, Miao Y. The nature of immune responses to urinary tract infections. Nat Rev Immunol. 2015;15(10):655–663. doi: 10.1038/nri3887
doi: 10.1038/nri3887
Wagner CA, Unwin R, Lopez-Garcia SC, Kleta R, Bockenhauer D, Walsh S. The pathophysiology of distal renal tubular acidosis. Nat Rev Nephrol. 2023;19(6):384–400. doi: 10.1038/s41581-023-00699-9
doi: 10.1038/s41581-023-00699-9
Prieto-Carrasquero MC, Botros FT, Kobori H, Navar LG. Collecting duct Renin: a major player in angiotensin II-dependent hypertension. J Am Soc Hypertens. 2009;3(2):96–104. doi: 10.1016/j.jash.2008.11.003
doi: 10.1016/j.jash.2008.11.003
Roy A, Al-Bataineh MM, Pastor-Soler NM. Collecting duct intercalated cell function and regulation. Clin J Am Soc Nephrol. 2015;10(2):305–324. doi: 10.2215/CJN.08880914
doi: 10.2215/CJN.08880914
Saxena V, Hains DS, Ketz J Cell-specific qRT-PCR of renal epithelial cells reveals a novel innate immune signature in murine collecting duct. Am J Physiol Renal Physiol. 2018;315(4):F812–F823. doi: 10.1152/ajprenal.00512.2016
doi: 10.1152/ajprenal.00512.2016
Saxena V, Gao H, Arregui S Kidney intercalated cells are phagocytic and acidify internalized uropathogenic Escherichia coli. Nat Commun. 2021;12(1):2405. doi: 10.1038/s41467-021-22672-5
doi: 10.1038/s41467-021-22672-5
Alzamora R, Thali RF, Gong F PKA regulates vacuolar H+-ATPase localization and activity via direct phosphorylation of the a subunit in kidney cells. J Biol Chem. 2010;285(32):24676–24685. doi: 10.1074/jbc.m110.106278
doi: 10.1074/jbc.m110.106278
Xu J, Barone S, Li H, Holiday S, Zahedi K, Soleimani M. Slc26a11, a chloride transporter, localizes with the vacuolar H(+)-ATPase of A-intercalated cells of the kidney. Kidney Int. 2011;80(9):926–937. doi: 10.1038/ki.2011.196
doi: 10.1038/ki.2011.196
Bastani B, Purcell H, Hemken P, Trigg D, Gluck S. Expression and distribution of renal vacuolar proton-translocating adenosine triphosphatase in response to chronic acid and alkali loads in the rat. J Clin Invest. 1991;88(1):126–136. doi: 10.1172/jci115268
doi: 10.1172/jci115268
Chambrey R, Kurth I, Peti-Peterdi J Renal intercalated cells are rather energized by a proton than a sodium pump. Proc Natl Acad Sci U S A. 2013;110(19):7928–7933. doi: 10.1073/pnas.1221496110
doi: 10.1073/pnas.1221496110
Kim J, Kim YH, Cha JH, Tisher CC, Madsen KM. Intercalated cell subtypes in connecting tubule and cortical collecting duct of rat and mouse. J Am Soc Nephrol. 1999;10(1):1–12. doi: 10.1681/ASN.v1011
doi: 10.1681/ASN.v1011
Goldspink A, Schmitz J, Babyak O Kidney medullary sodium chloride concentrations induce neutrophil and monocyte extracellular DNA traps that defend against pyelonephritis in vivo. Kidney Int. 2023;104(2):279–292. doi: 10.1016/j.kint.2023.03.034
doi: 10.1016/j.kint.2023.03.034
Berry MR, Mathews RJ, Ferdinand JR Renal sodium gradient orchestrates a dynamic antibacterial defense zone. Cell. 2017;170(5):860–874.e19. doi: 10.1016/j.cell.2017.07.022
doi: 10.1016/j.cell.2017.07.022
Ayasse N, de Bruijn PIA, Berg P, Sørensen MV, Leipziger J. Hydrochlorothiazide and acute urinary acidification: the “voltage hypothesis” of ENaC-dependent H + secretion refuted. Acta Physiol (Oxf). 2018;223(1):e13013. doi: 10.1111/apha.13013
doi: 10.1111/apha.13013
Leviel F, Hubner CA, Houillier P The Na+-dependent chloride-bicarbonate exchanger SLC4A8 mediates an electroneutral Na+ reabsorption process in the renal cortical collecting ducts of mice. J Clin Invest. 2010;120(5):1627–1635. doi: 10.1172/jci40145
doi: 10.1172/jci40145
Eladari D, Chambrey R, Peti-Peterdi J. A new look at electrolyte transport in the distal tubule. Annu Rev Physiol. 2012;74(1):325–349. doi: 10.1146/annurev-physiol-020911-153225
doi: 10.1146/annurev-physiol-020911-153225
Vitzthum H, Koch M, Eckermann L The AE4 transporter mediates kidney acid-base sensing. Nat Commun. 2023;14(1):3051. doi: 10.1038/s41467-023-38562-x
doi: 10.1038/s41467-023-38562-x
Günzel D, Yu ASL. Claudins and the modulation of tight junction permeability. Physiol Rev. 2013;93(2):525–569. doi: 10.1152/physrev.00019.2012
doi: 10.1152/physrev.00019.2012
Hou J, Rajagopal M, Yu AS. Claudins and the kidney. Annu Rev Physiol. 2013;75(1):479–501. doi: 10.1146/annurev-physiol-030212-183705
doi: 10.1146/annurev-physiol-030212-183705
Azroyan A, Cortez-Retamozo V, Bouley R, et al. Renal intercalated cells sense and mediate inflammation via the P2Y14 receptor. PLoS One. 2015;10(3):e0121419. doi: 10.1371/journal.pone.0121419
doi: 10.1371/journal.pone.0121419
Battistone MA, Mendelsohn AC, Spallanzani RG, et al. Proinflammatory P2Y14 receptor inhibition protects against ischemic acute kidney injury in mice. J Clin Invest. 2020;130(7):3734–3749. doi: 10.1172/jci134791
doi: 10.1172/jci134791
Breton S, Battistone MA. Unexpected participation of intercalated cells in renal inflammation and acute kidney injury. Nephron. 2022;146(3):268–273. doi: 10.1159/000519265
doi: 10.1159/000519265
Shah C, Baral R, Bartaula B, Shrestha LB. Virulence factors of uropathogenic Escherichia coli (UPEC) and correlation with antimicrobial resistance. BMC Microbiol. 2019;19(1):204. doi: 10.1186/s12866-019-1587-3
doi: 10.1186/s12866-019-1587-3
Ghazvini H, Taheri K, Edalati E, Sedighi M, Mirkalantari S. Virulence factors and antimicrobial resistance in uropathogenic Escherichia coli strains isolated from cystitis and pyelonephritis. Turkish J Med Sci. 2019;49(1):361–367. doi: 10.3906/sag-1805-100
doi: 10.3906/sag-1805-100
McLellan LK, McAllaster MR, Kim AS A host receptor enables type 1 pilus-mediated pathogenesis of Escherichia coli pyelonephritis. PLoS Pathog. 2021;17(1):e1009314. doi: 10.1371/journal.ppat.1009314
doi: 10.1371/journal.ppat.1009314
Lund B, Lindberg F, Marklund BI, Normark S. The PapG protein is the alpha-D-galactopyranosyl-(1----4)-beta-D-galactopyranose-binding adhesin of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A. 1987;84(16):5898–5902. doi: 10.1073/pnas.84.16.5898
doi: 10.1073/pnas.84.16.5898
Good DW, George T, Watts BA. Toll-like receptor 2 is required for LPS-induced Toll-like receptor 4 signaling and inhibition of ion transport in renal thick ascending limb. J Biol Chem. 2012;287(24):20208–20220. doi: 10.1074/jbc.m111.336255
doi: 10.1074/jbc.m111.336255
Andersen-Nissen E, Hawn TR, Smith KD Cutting edge: Tlr5-/- mice are more susceptible to Escherichia coli urinary tract infection. J Immunol. 2007;178(8):4717–4720. doi: 10.4049/jimmunol.178.8.4717
doi: 10.4049/jimmunol.178.8.4717
Zhang D, Zhang G, Hayden MS, et al. A toll-like receptor that prevents infection by uropathogenic bacteria. Science. 2004;303(5663):1522–1526. doi: 10.1126/science.1094351
doi: 10.1126/science.1094351
Chassin C, Vimont S, Cluzeaud F, et al. TLR4 facilitates translocation of bacteria across renal collecting duct cells. J Am Soc Nephrol. 2008;19(12):2364–2374. doi: 10.1681/ASN.2007121273
doi: 10.1681/ASN.2007121273
Chassin C, Goujon J-M, Darche S Renal collecting duct epithelial cells react to pyelonephritis-associated Escherichia coli by activating distinct TLR4-dependent and -independent inflammatory pathways. J Immunol. 2006;177(7):4773–4784. doi: 10.4049/jimmunol.177.7.4773
doi: 10.4049/jimmunol.177.7.4773
Saxena V, Arregui S, Kamocka MM, Hains DS, Schwaderer A. MAP3K7 is an innate immune regulatory gene with increased expression in human and murine kidney intercalated cells following uropathogenic Escherichia coli exposure. J Cell Biochem. 2022;123(11):1817–1826. doi: 10.1002/jcb.30318
doi: 10.1002/jcb.30318
Ajibade AA, Wang HY, Wang R-F. Cell type-specific function of TAK1 in innate immune signaling. Trends Immunol. 2013;34(7):307–316. doi: 10.1016/j.it.2013.03.007
doi: 10.1016/j.it.2013.03.007
Good DW, George T, Watts BA. Lipopolysaccharide directly alters renal tubule transport through distinct TLR4-dependent pathways in basolateral and apical membranes. Am J Physiol Renal Physiol. 2009;297(4):866–874. doi: 10.1152/ajprenal.00335.2009
doi: 10.1152/ajprenal.00335.2009
Watts BA, George T, Sherwood ER, Good DW. Basolateral LPS inhibits NHE3 and HCO 3- absorption through TLR4/MyD88- dependent ERK activation in medullary thick ascending limb. Am J Physiol Cell Physiol. 2011;301(6):C1296–C1306. doi: 10.1152/ajpcell.00237.2011
doi: 10.1152/ajpcell.00237.2011
Paragas N, Kulkarni R, Werth M α-Intercalated cells defend the urinary system from bacterial infection. J Clin Invest. 2014;124(7):2963–2976. doi: 10.1172/jci71630
doi: 10.1172/jci71630
Bodel P, Cotral R, Kass E. Cranberry juice and the antibacterial action of hippuric acid. J Lab Clin Med. 1959;54:881–888. PMID: 13801916.
Purkerson JM, Corley JL, Schwartz GJ. Metabolic acidosis exacerbates pyelonephritis in mice prone to vesicoureteral reflux. Physiol Rep. 2020;8(19):e14525. doi: 10.14814/phy2.14525
doi: 10.14814/phy2.14525
Breton S, Alper SL, Gluck SL, Sly WS, Barker JE, Brown D. Depletion of intercalated cells from collecting ducts of carbonic anhydrase II-deficient (CAR2 null) mice. Am J Physiol. 1995;269(6):F761–F774. doi: 10.1152/ajprenal.1995.269.6.f761
doi: 10.1152/ajprenal.1995.269.6.f761
Hains DS, Chen X, Saxena V, et al. Carbonic anhydrase 2 deficiency leads to increased pyelonephritis susceptibility. Am J Physiol Renal Physiol. 2014;307(7):F869–F880. doi: 10.1152/ajprenal.00344.2014
doi: 10.1152/ajprenal.00344.2014
Ketz J, Saxena V, Arregui S, et al. Developmental loss, but not pharmacological suppression, of renal carbonic anhydrase 2 results in pyelonephritis susceptibility. Am J Physiol Renal Physiol. 2020;318(6):F1441–F1453. doi: 10.1152/ajprenal.00583.2019
doi: 10.1152/ajprenal.00583.2019
Nadtochiy SM, Schafer X, Fu D, Nehrke K, Munger J, Brookes PS. Acidic pH Is a metabolic switch for 2-hydroxyglutarate generation and signaling. J Biol Chem. 2016;291(38):20188–20197. doi: 10.1074/jbc.m116.738799
doi: 10.1074/jbc.m116.738799
Peng H, Purkerson JM, Freeman RS, Schwaderer AL, Schwartz GJ. Acidosis induces antimicrobial peptide expression and resistance to uropathogenic E. coli infection in kidney collecting duct cells via HIF-1α. Am J Physiol Renal Physiol. 2020;318(2):F468–F474. doi: 10.1152/ajprenal.00228.2019
doi: 10.1152/ajprenal.00228.2019
Lin AE, Beasley FC, Olson J Role of hypoxia inducible factor-1α (HIF-1α) in innate defense against uropathogenic Escherichia coli infection. PLoS Pathog. 2015;11(4):e1004818. doi: 10.1371/journal.ppat.1004818
doi: 10.1371/journal.ppat.1004818
Chromek M, Slamová Z, Bergman P The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat Med. 2006;12(6):636–641. doi: 10.1038/nm1407
doi: 10.1038/nm1407
Brauner H, Lüthje P, Grünler J Markers of innate immune activity in patients with type 1 and type 2 diabetes mellitus and the effect of the anti-oxidant coenzyme Q10 on inflammatory activity. Clin Exp Immunol. 2014;177(2):478–482. doi: 10.1111/cei.12316
doi: 10.1111/cei.12316
Eichler T, Bender K, Murtha MJ, et al. Ribonuclease 7 shields the kidney and bladder from invasive uropathogenic escherichia coli infection. J Am Soc Nephrol. 2019;30(8):1385–1397. doi: 10.1681/ASN.2018090929
doi: 10.1681/ASN.2018090929
Mohanty S, Kamolvit W, Scheffschick A, et al. Diabetes downregulates the antimicrobial peptide psoriasin and increases E. coli burden in the urinary bladder. Nat Commun. 2022;13(1):4983. doi: 10.1038/s41467-022-32636-y
doi: 10.1038/s41467-022-32636-y
Kaye D. Antibacterial activity of human urine. J Clin Invest. 1968;47(10):2374–2390. doi: 10.1172/jci105921
doi: 10.1172/jci105921
Valore EV, Park CH, Quayle AJ, Wiles KR, McCray PB, Ganz T. Human beta-defensin-1: an antimicrobial peptide of urogenital tissues. J Clin Invest. 1998;101(8):1633–1642. doi: 10.1172/jci1861
doi: 10.1172/jci1861
Wang H, Schwaderer AL, Kline J, Spencer JD, Kline D, Hains DS. Contribution of structural domains to the activity of ribonuclease 7 against uropathogenic bacteria. Antimicrob Agents Chemother. 2013;57(2):766–774. doi: 10.1128/aac.01378-12
doi: 10.1128/aac.01378-12
Kaye D, Rocha H. Urinary concentrating ability in early experimental pyelonephritis. J Clin Invest. 1970;49(7):1427–1437. doi: 10.1172/jci106360
doi: 10.1172/jci106360
Sterner G. Renal concentration capacity in adult patients with urinary tract infections. Scand J Urol Nephrol. 1991;25(3):219–222. doi: 10.3109/00365599109107950
doi: 10.3109/00365599109107950
Zagaglia C, Ammendolia MG, Maurizi L, Nicoletti M, Longhi C. Urinary tract infections caused by uropathogenic Escherichia coli strains-new strategies for an old pathogen. Microorganisms. 2022;10(7):1425. doi: 10.3390/microorganisms10071425
doi: 10.3390/microorganisms10071425
Steigedal M, Marstad A, Haug M Lipocalin 2 imparts selective pressure on bacterial growth in the bladder and is elevated in women with urinary tract infection. J Immunol. 2014;193(12):6081–6089. doi: 10.4049/jimmunol.1401528
doi: 10.4049/jimmunol.1401528
Devireddy LR, Gazin C, Zhu X, Green MR. A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell. 2005;123(7):1293–1305. doi: 10.1016/j.cell.2005.10.027
doi: 10.1016/j.cell.2005.10.027
Betten R, Scharner B, Probst S Tonicity inversely modulates lipocalin-2 (Lcn2/24p3/NGAL) receptor (SLC22A17) and Lcn2 expression via Wnt/β-catenin signaling in renal inner medullary collecting duct cells: implications for cell fate and bacterial infection. Cell Commun Signal. 2018;16(1):74. doi: 10.1186/s12964-018-0285-3
doi: 10.1186/s12964-018-0285-3
Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell. 2002;10(5):1033–1043. doi: 10.1016/s1097-2765(02)00708-6
doi: 10.1016/s1097-2765(02)00708-6
Bao G, Clifton M, Hoette TM Iron traffics in circulation bound to a siderocalin (Ngal)-catechol complex. Nat Chem Biol. 2010;6(8):602–609. doi: 10.1038/nchembio.402
doi: 10.1038/nchembio.402
Devireddy LR, Hart DO, Goetz DH, Green MR. A mammalian siderophore synthesized by an enzyme with a bacterial homolog involved in enterobactin production. Cell. 2010;141(6):1006–1017. doi: 10.1016/j.cell.2010.04.040
doi: 10.1016/j.cell.2010.04.040
Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov. 2020;19(5):311–332. doi: 10.1038/s41573-019-0058-8
doi: 10.1038/s41573-019-0058-8
Hinson JP, Kapas S, Smith DM. Adrenomedullin, a multifunctional regulatory peptide. Endocr Rev. 2000;21(2):138–167. doi: 10.1210/edrv.21.2.0396
doi: 10.1210/edrv.21.2.0396
Kalman S, Buyan N, Yurekli M, Ozkaya O, Bakkaloglu S, Soylemezoglu O. Plasma and urinary adrenomedullin levels in children with acute pyelonephritis. Nephrology. 2005;10(5):487–490. doi: 10.1111/j.1440-1797.2005.00468.x
doi: 10.1111/j.1440-1797.2005.00468.x
Uawithya P, Pisitkun T, Ruttenberg BE, Knepper MA. Transcriptional profiling of native inner medullary collecting duct cells from rat kidney. Physiol Genomics. 2008;32(2):229–253. doi: 10.1152/physiolgenomics.00201.2007
doi: 10.1152/physiolgenomics.00201.2007
Allaker RP, Grosvenor PW, McAnerney DC, et al. Mechanisms of adrenomedullin antimicrobial action. Peptides. 2006;27(4):661–666. doi: 10.1016/j.peptides.2005.09.003
doi: 10.1016/j.peptides.2005.09.003
Wong LYF, Cheung BMY, Li YY, Tang F. Adrenomedullin is both proinflammatory and antiinflammatory: its effects on gene expression and secretion of cytokines and macrophage migration inhibitory factor in NR8383 macrophage cell line. Endocrinology. 2005;146(3):1321–1327. doi: 10.1210/en.2004-1080
doi: 10.1210/en.2004-1080
Harder J, Schröder JM. RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. J Biol Chem. 2002;277(48):46779–46784. doi: 10.1074/jbc.m207587200
doi: 10.1074/jbc.m207587200
Spencer JD, Schwaderer AL, Dirosario JD, et al. Ribonuclease 7 is a potent antimicrobial peptide within the human urinary tract. Kidney Int. 2011;80(2):174–180. doi: 10.1038/ki.2011.109
doi: 10.1038/ki.2011.109
Eichler TE, Becknell B, Easterling RS, et al. Insulin and the phosphatidylinositol 3-kinase signaling pathway regulate Ribonuclease 7 expression in the human urinary tract. Kidney Int. 2016;90(3):568–579. doi: 10.1016/j.kint.2016.04.025
doi: 10.1016/j.kint.2016.04.025
Spencer JD, Schwaderer AL, Wang H Ribonuclease 7, an antimicrobial peptide upregulated during infection, contributes to microbial defense of the human urinary tract. Kidney Int. 2013;83(4):615–625. doi: 10.1038/ki.2012.410
doi: 10.1038/ki.2012.410
Bender K, Schwartz LL, Cohen A Expression and function of human ribonuclease 4 in the kidney and urinary tract. Am J Physiol Renal Physiol. 2021;320(5):F972–F983. doi: 10.1152/ajprenal.00592.2020
doi: 10.1152/ajprenal.00592.2020
Spencer JD, Hains DS, Porter E Human alpha Defensin 5 expression in the human kidney and urinary tract. PLoS One. 2012;7(2):e31712. doi: 10.1371/journal.pone.0031712
doi: 10.1371/journal.pone.0031712
Schwaderer AL, Wang H, Kim SH Polymorphisms in α-Defensin–encoding DEFA1A3 associate with urinary tract infection risk in children with vesicoureteral reflux. J Am Soc Nephrol. 2016;27(10):3175–3186. doi: 10.1681/ASN.2015060700
doi: 10.1681/ASN.2015060700
Canas JJ, Liang D, Saxena V Human neutrophil peptides 1-3 protect the murine urinary tract from uropathogenic Escherichia coli challenge. Proc Natl Acad Sci U S A. 2022;119(40):e2206515119. doi: 10.1073/pnas.2206515119
doi: 10.1073/pnas.2206515119
Hiratsuka T, Nakazato M, Ihi T, et al. Structural analysis of human beta-defensin-1 and its significance in urinary tract infection. Nephron. 2000;85(1):34–40. doi: 10.1159/000045627
doi: 10.1159/000045627
Morrison G, Kilanowski F, Davidson D, Dorin J. Characterization of the mouse beta defensin 1, Defb1, mutant mouse model. Infect Immun. 2002;70(6):3053–3060. doi: 10.1128/iai.70.6.3053-3060.2002
doi: 10.1128/iai.70.6.3053-3060.2002
Nielsen KL, Dynesen P, Larsen P, Jakobsen L, Andersen PS, Frimodt-Møller N. Role of urinary cathelicidin LL-37 and human β-defensin 1 in uncomplicated Escherichia coli urinary tract infections. Infect Immun. 2014;82(4):1572–1578. doi: 10.1128/iai.01393-13
doi: 10.1128/iai.01393-13
Pak J, Pu Y, Zhang ZT, Hasty DL, Wu XR. Tamm-Horsfall protein binds to type 1 fimbriated Escherichia coli and prevents E. coli from binding to uroplakin Ia and Ib receptors. J Biol Chem. 2001;276(13):9924–9930. doi: 10.1074/jbc.m008610200
doi: 10.1074/jbc.m008610200
Houamel D, Ducrot N, Lefebvre T Hepcidin as a major component of renal antibacterial defenses against uropathogenic Escherichia coli. J Am Soc Nephrol. 2016;27(3):835–846. doi: 10.1681/ASN.2014101035
doi: 10.1681/ASN.2014101035
Keren R, Shaikh N, Pohl H, et al. Risk factors for recurrent urinary tract infection and renal scarring. Pediatrics. 2015;136(1):e13–e21. doi: 10.1542/peds.2015-0409
doi: 10.1542/peds.2015-0409
Garin EH. Primary vesicoureteral reflux; what have we learnt from the recently published randomized, controlled trials? Pediatr Nephrol. 2019;34(9):1513–1519. doi: 10.1007/s00467-018-4045-9
doi: 10.1007/s00467-018-4045-9
Maringhini S, Cusumano R, Corrado C Uromodulin and vesico-ureteral reflux: a genetic study. Biomedicines. 2023;11(2):509. doi: 10.3390/biomedicines11020509
doi: 10.3390/biomedicines11020509
Lundstedt AC, McCarthy S, Gustafsson MCU, et al. A genetic basis of susceptibility to acute pyelonephritis. PLoS One. 2007;2(9):e825. doi: 10.1371/journal.pone.0000825
doi: 10.1371/journal.pone.0000825
Tseng MH, Huang JL, Huang SM Clinical features, genetic background, and outcome in infants with urinary tract infection and type IV renal tubular acidosis. Pediatr Res. 2020;87(7):1251–1255. doi: 10.1038/s41390-019-0727-7
doi: 10.1038/s41390-019-0727-7
Parker AS, Cerhan JR, Lynch CF, Leibovich BC, Cantor KP. History of urinary tract infection and risk of renal cell carcinoma. Am J Epidemiol. 2004;159(1):42–48. doi: 10.1093/aje/kwh014
doi: 10.1093/aje/kwh014
Gao C, Zhang L, Zhang Y Insights into cellular and molecular basis for urinary tract infection in autosomal-dominant polycystic kidney disease. Am J Physiol Renal Physiol. 2017;313(5):F1077–F1083. doi: 10.1152/ajprenal.00279.2017
doi: 10.1152/ajprenal.00279.2017
Eroglu E, Kocyigit I, Cetin M Multiple urinary tract infections are associated with genotype and phenotype in adult polycystic kidney disease. Clin Exp Nephrol. 2019;23(10):1188–1195. doi: 10.1007/s10157-019-01752-3
doi: 10.1007/s10157-019-01752-3
Idrizi A, Barbullushi M, Koroshi A Urinary tract infections in polycystic kidney disease. Med Arh. 2011;65(4):213–215. doi: 10.5455/medarh.2011.65.213-215
doi: 10.5455/medarh.2011.65.213-215
Autosomal Dominant Polycystic Kidney Disease (ADPKD): Evaluation and Management Of Complicated Urinary Tract Infections—UpToDate. Accessed May 11, 2023. https://www.uptodate.com/contents/autosomal-dominant-polycystic-kidney-disease-adpkd-evaluation-and-management-of-complicated-urinary-tract-infections
Chiu PF, Huang CH, Liou HH, Wu CL, Wang SC, Chang CC. Long-term renal outcomes of episodic urinary tract infection in diabetic patients. J Diabetes Complications. 2013;27(1):41–43. doi: 10.1016/j.jdiacomp.2012.08.005
doi: 10.1016/j.jdiacomp.2012.08.005
Patterson JE, Andriole VT. Bacterial urinary tract infections in diabetes. Infect Dis Clin North Am. 1997;11(3):735–750. doi: 10.1016/s0891-5520(05)70383-4
doi: 10.1016/s0891-5520(05)70383-4
Murtha MJ, Eichler T, Bender K Insulin receptor signaling regulates renal collecting duct and intercalated cell antibacterial defenses. J Clin Invest. 2018;128(12):5634–5646. doi: 10.1172/jci98595
doi: 10.1172/jci98595
Hale LJ, Coward RM. Insulin signalling to the kidney in health and disease. Clin Sci. 2013;124(6):351–370. doi: 10.1042/cs20120378
doi: 10.1042/cs20120378
Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998;282(5396):2085–2088. doi: 10.1126/science.282.5396.2085
doi: 10.1126/science.282.5396.2085