Feasibility of 4D HDR brachytherapy source tracking using x-ray tomosynthesis: Monte Carlo investigation.


Journal

Medical physics
ISSN: 2473-4209
Titre abrégé: Med Phys
Pays: United States
ID NLM: 0425746

Informations de publication

Date de publication:
Aug 2023
Historique:
revised: 16 05 2023
received: 04 01 2023
accepted: 11 06 2023
medline: 15 8 2023
pubmed: 4 7 2023
entrez: 4 7 2023
Statut: ppublish

Résumé

High dose rate (HDR) brachytherapy rapidly delivers dose to targets with steep dose gradients. This treatment method must adhere to prescribed treatment plans with high spatiotemporal accuracy and precision, as failure to do so may degrade clinical outcomes. One approach to achieving this goal is to develop imaging techniques to track HDR sources in vivo in reference to surrounding anatomy. This work investigates the feasibility of using an isocentric C-arm x-ray imager and tomosynthesis methods to track Ir-192 HDR brachytherapy sources in vivo over time (4D). A tomosynthesis imaging workflow was proposed and its achievable source detectability, localization accuracy, and spatiotemporal resolution were investigated in silico. An anthropomorphic female XCAT phantom was modified to include a vaginal cylinder applicator and Ir-192 HDR source (0.5 × 0.5 × 5.0 mm The HDR source was readily detected and its centroid was accurately localized with the proposed workflow and method (SDNR: 10-40, 3D error: 0-0.144 mm). Tradeoffs were demonstrated for various combinations of image acquisition parameters; namely, increasing the tomosynthesis acquisition angular range improved resolution in the depth-encoded direction, for example from 2.5 mm to 1.2 mm between θ A system and method for tracking HDR brachytherapy sources in vivo using C-arm tomosynthesis was proposed and its performance investigated in silico. Tradeoffs in source conspicuity, localization accuracy, spatiotemporal resolution, and dose were determined. The results suggest this approach is feasible for localizing an Ir-192 HDR source in vivo with submillimeter spatial resolution, 1-3 second temporal resolution and minimal additional dose burden.

Identifiants

pubmed: 37402139
doi: 10.1002/mp.16579
doi:

Substances chimiques

Iridium-192 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

4695-4709

Informations de copyright

© 2023 American Association of Physicists in Medicine.

Références

Banerjee R, Kamrava M. Brachytherapy in the treatment of cervical cancer: a review. Int J Womens Health. 2014;6:555-64. https://doi.org/10.2147/ijwh.S46247
Manoharan SR, Rodriguez RR, Bobba VS, Chandrashekar M. Dosimetry evaluation of SAVI-based HDR brachytherapy for partial breast irradiation. J Med Phys. 2010;35(3):131-6. https://doi.org/10.4103/0971-6203.62127
Nag S. High dose rate brachytherapy: its clinical applications and treatment guidelines. Technol Cancer Res Treat. 2004;3(3):269-87. https://doi.org/10.1177/153303460400300305
Poder J, Koprivec D, Dookie Y, et al. HDR prostate brachytherapy plan robustness and its effect on in-vivo source tracking error thresholds: a multi-institutional study. Med Phys. 2022;49(6):3529-3537. https://doi.org/10.1002/mp.15658
Skowronek J. Brachytherapy in the treatment of skin cancer: an overview. Postepy Dermatol Alergol. 2015;32(5):362-7. https://doi.org/10.5114/pdia.2015.54746
Viani GA, Manta GB, Stefano EJ, de Fendi LI. Brachytherapy for cervix cancer: low-dose rate or high-dose rate brachytherapy - a meta-analysis of clinical trials. J Exp Clin Cancer Res. 2009;28(1):47. https://doi.org/10.1186/1756-9966-28-47
Podgorsak MB, DeWerd LA, Paliwal BR. The half-life of high dose rate Ir-192 sources. Med Phys. 1993;20(4):1257-1259. https://doi.org/10.1118/1.596976
Valentin J. Prevention of high-dose-rate brachytherapy accidents. ICRP publication 97. Ann ICRP. 2005;35(2):1-51. https://doi.org/10.1016/j.icrp.2005.05.002
Kubo HD, Glasgow GP, Pethel TD, Thomadsen BR, Williamson JF. High dose-rate brachytherapy treatment delivery: report of the AAPM radiation therapy committee task group No. 59. Med Phys. 1998;25(4):375-403.
Okamoto H, Aikawa A, Wakita A, et al. Dose error from deviation of dwell time and source position for high dose-rate 192Ir in remote afterloading system. J Radiat Res. 2014;55(4):780-7. https://doi.org/10.1093/jrr/rru001
Nag S, Cardenes H, Chang S, et al. Proposed guidelines for image-based intracavitary brachytherapy for cervical carcinoma: report from image-guided brachytherapy working group. Int J Radiat Oncol Biol Phys. 2004;60(4):1160-72. https://doi.org/10.1016/j.ijrobp.2004.04.032
Venselaar J, Pérez-Calatayud J. A practical guide to quality control of brachytherapy equipment, ESTRO booklet No. 8. Eur Soc Ther Radiol Oncol Brussels. 2004;
Williamson J. Quality assurance for high dose rate brachytherapy. High Dose Rate Brachytherapy. 1994:147-212.
Glasgow GP, Bourland JD, Grigsby PW, Meli JA, Weaver KA. AAPM report No. 041 - remote afterloading technology. Am Assoc Phys Med. 1993.
Kubo HD, Glasgow GP, Pethel TD, Thomadsen BR, Williamson JF. High dose-rate brachytherapy treatment delivery: report of the AAPM Radiation Therapy Committee Task Group No. 59. Med Phys. 1998;25(4):375-403. https://doi.org/10.1118/1.598232
Nath R, Anderson LL, Meli JA, Olch AJ, Stitt JA, Williamson JF. Code of practice for brachytherapy physics: report of the AAPM Radiation Therapy Committee Task Group No. 56. American Association of Physicists in Medicine. Med Phys. 1997;24(10):1557-98. https://doi.org/10.1118/1.597966
Awunor O, Berger D, Kirisits C. A multicenter study to quantify systematic variations and associated uncertainties in source positioning with commonly used HDR afterloaders and ring applicators for the treatment of cervical carcinomas. Med Phys. 2015;42(8):4472-4483. https://doi.org/10.1118/1.4923173
Stern RL, Liu T. Dwell position inaccuracy in the Varian GammaMed HDR ring applicator. J Appl Clin Med Phys. 2010;11(4):291-296. https://doi.org/10.1120/jacmp.v11i4.3158
Richardson S. A 2-year review of recent Nuclear Regulatory Commission events: What errors occur in the modern brachytherapy era? Pract Radiat Oncol. 2012;2(3):157-163. https://doi.org/10.1016/j.prro.2011.08.004
Thomadsen B, Lin SW, Laemmrich P, et al. Analysis of treatment delivery errors in brachytherapy using formal risk analysis techniques. Int J Radiat Oncol Biol Phys. 2003;57(5):1492-508. https://doi.org/10.1016/s0360-3016(03)01622-5
Fonseca GP, Johansen JG, Smith RL, et al. In vivo dosimetry in brachytherapy: Requirements and future directions for research, development, and clinical practice. Phys Imaging Radiat Oncol. 2020;16:1-11. https://doi.org/10.1016/j.phro.2020.09.002
Aldelaijan S, Devic S, Bekerat H, et al. Positional and angular tracking of HDR 192Ir source for brachytherapy quality assurance using radiochromic film dosimetry. Med Phys. 2020;47(12):6122-6139. https://doi.org/10.1002/mp.14540
Watanabe Y, Muraishi H, Takei H, et al. Automated source tracking with a pinhole imaging system during high-dose-rate brachytherapy treatment. Phys Med Biol. 2018;63(14):145002. https://doi.org/10.1088/1361-6560/aacdc9
Safavi-Naeini M, Han Z, Alnaghy S, et al. BrachyView, a novel in-body imaging system for HDR prostate brachytherapy: experimental evaluation. Med Phys. 2015;42(12):7098-107. https://doi.org/10.1118/1.4935866
Nakano T, Suchowerska N, Bilek MM, McKenzie DR, Ng N, Kron T. High dose-rate brachytherapy source localization: positional resolution using a diamond detector. Phys Med Biol. 2003;48(14):2133-46. https://doi.org/10.1088/0031-9155/48/14/307
Fonseca GP, Podesta M, Bellezzo M, et al. Online pretreatment verification of high-dose rate brachytherapy using an imaging panel. Phys Med Biol. 2017;62(13):5440. https://doi.org/10.1088/1361-6560/aa7028
Smith RL, Taylor ML, McDermott LN, Haworth A, Millar JL, Franich RD. Source position verification and dosimetry in HDR brachytherapy using an EPID. Med Phys. 2013;40(11):111706. https://doi.org/10.1118/1.4823758
Smith RL, Hanlon M, Panettieri V, et al. An integrated system for clinical treatment verification of HDR prostate brachytherapy combining source tracking with pretreatment imaging. Brachytherapy. 2018;17(1):111-121. https://doi.org/10.1016/j.brachy.2017.08.004
Beld E, Seevinck PR, Schuurman J, Viergever MA, Lagendijk JJW, Moerland MA. Development and testing of a magnetic resonance (MR) conditional afterloader for source tracking in magnetic resonance imaging-guided high-dose-rate (HDR) brachytherapy. Int J Radiat Oncol Biol Phys. 2018;102(4):960-968. https://doi.org/10.1016/j.ijrobp.2018.04.066
de Leeuw H, Moerland MA, van Vulpen M, Seevinck PR, Bakker CJG. A dual-plane co-RASOR technique for accurate and rapid tracking and position verification of an Ir-192 source for single fraction HDR brachytherapy. Phys Med Biol. 2013;58(21):7829. https://doi.org/10.1088/0031-9155/58/21/7829
Wang W, Viswanathan AN, Damato AL, et al. Evaluation of an active magnetic resonance tracking system for interstitial brachytherapy. Med Phys. 2015;42(12):7114-7121. https://doi.org/10.1118/1.4935535
Nose T, Chatani M, Otani Y, Teshima T, Kumita S. Real-time verification of a high-dose-rate iridium 192 source position using a modified C-arm fluoroscope. Int J Radiat Oncol Biol Phys. 2017;97(4):858-865. https://doi.org/10.1016/j.ijrobp.2016.12.005
Nose T, Masui K, Takenaka T, et al. An easy and novel method for safer brachytherapy: real-time fluoroscopic verification of high-dose-rate 192Ir source position using a flat-panel detector. J Radiat Res. 2019;60(3):412-415. https://doi.org/10.1093/jrr/rrz013
Miyahara Y, Kitagaki H, Nishimura T, et al. Usefulness of direct-conversion flat-panel detector system as a quality assurance tool for high-dose-rate 192Ir source. J Appl Clin Med Phys. 2015;16(1):5068. https://doi.org/10.1120/jacmp.v16i1.5068
Rodet T, Noo F, Defrise M. The cone-beam algorithm of Feldkamp, Davis, and Kress preserves oblique line integrals. Med Phys. 2004;31(7):1972-5. https://doi.org/10.1118/1.1759828
Mistretta CA, Wieben O, Velikina J, et al. Highly constrained backprojection for time-resolved MRI. Magn Reson Med. 2006;55(1):30-40. https://doi.org/10.1002/mrm.20772
Supanich M, Tao Y, Nett B, et al. Radiation dose reduction in time-resolved CT angiography using highly constrained back projection reconstruction. Phys Med Biol. 2009;54(14):4575-93. https://doi.org/10.1088/0031-9155/54/14/013
Davis B, Royalty K, Kowarschik M, et al. 4D digital subtraction angiography: implementation and demonstration of feasibility. AJNR Am J Neuroradiol. 2013;34(10):1914-21. https://doi.org/10.3174/ajnr.A3529
Ruedinger KL, Schafer S, Speidel MA, Strother CM. 4D-DSA: Development and Current Neurovascular Applications. AJNR Am J Neuroradiol. 2021;42(2):214-220. https://doi.org/10.3174/ajnr.A6860
Badal A, Badano A. Accelerating Monte Carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit. Med Phys. 2009;36(11):4878-80. https://doi.org/10.1118/1.3231824
Organisation for Economic C-O, Development NEAIlM. Penelope-2006: a code system for Monte Carlo simulation of electron and photon transport. Organisation for Economic Co-Operation and Development - Nuclear Energy Agency; 2006.
Segars WP, Sturgeon G, Mendonca S, Grimes J, Tsui BM. 4D XCAT phantom for multimodality imaging research. Med Phys. 2010;37(9):4902-15. https://doi.org/10.1118/1.3480985
Punnoose J, Xu J, Sisniega A, Zbijewski W, Siewerdsen JH. Technical Note: spektr 3.0-A computational tool for x-ray spectrum modeling and analysis. Med Phys. 2016;43(8):4711. https://doi.org/10.1118/1.4955438
Hernandez A, Boone J. Tungsten anode spectral model using interpolating cubic splines: unfiltered x-ray spectra from 20 kV to 640 kV. Med Phys. 2014;41:042101. https://doi.org/10.1118/1.4866216
Fetterly KA, Schueler BA. Experimental evaluation of fiber-interspaced antiscatter grids for large patient imaging with digital x-ray systems. Phys Med Biol. 2007;52(16):4863-80. https://doi.org/10.1088/0031-9155/52/16/010
Zhao W, Ristic G, Rowlands JA. X-ray imaging performance of structured cesium iodide scintillators. Med Phys. 2004;31(9):2594-2605. https://doi.org/10.1118/1.1782676
Howansky A, Lubinsky A, Ghose S, Suzuki K, Zhao W. Investigation of random gain variations in columnar CsI:Tl using single x-ray photon imaging. vol 10573. SPIE Medical Imaging. SPIE; 2018.
Howansky A, Peng B, Lubinsky AR, Zhao W. Deriving depth-dependent light escape efficiency and optical Swank factor from measured pulse height spectra of scintillators. Med Phys. 2017;44(3):847-860. https://doi.org/10.1002/mp.12083
Howansky A, Mishchenko A, Lubinsky AR, Zhao W. Comparison of CsI:Tl and Gd2O2S:Tb indirect flat panel detector x-ray imaging performance in front- and back-irradiation geometries. Med Phys. 2019;46(11):4857-4868. https://doi.org/10.1002/mp.13791
Van Metter R, Dillon PL, Huff KE, Rabbani M. Computer simulation of radiographic screen-film images. SPIE; 1986:82-99.
Howansky A, Lubinsky A, Ghose S, Suzuki K, Zhao W. Direct measurement of Lubberts effect in CsI:Tl scintillators using single x-ray photon imaging. vol 10132. SPIE Medical Imaging. SPIE; 2017.
Antonuk LE, Boudry J, Huang W, et al. Demonstration of megavoltage and diagnostic x-ray imaging with hydrogenated amorphous silicon arrays. Med Phys. 1992;19(6):1455-1466.
Sheth NM, Zbijewski W, Jacobson MW, et al. Mobile C-Arm with a CMOS detector: Technical assessment of fluoroscopy and Cone-Beam CT imaging performance. Med Phys. 2018;45(12):5420-5436. https://doi.org/10.1002/mp.13244
Sheikh-Bagheri D, Munro P. A Monte Carlo study of verification imaging in high dose rate brachytherapy. Med Phys. 1998;25(4):404-414. https://doi.org/10.1118/1.598215
Mettler FA, Jr., Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology. 2008;248(1):254-63. https://doi.org/10.1148/radiol.2481071451
Hauri P, Hälg RA, Schneider U. Technical note: No increase in effective dose from half compared to full rotation pelvis cone beam CT. J Appl Clin Med Phys. 2017;18(5):364-368. https://doi.org/10.1002/acm2.12150
Boudry JM, Antonuk LE. Radiation damage of amorphous silicon, thin-film, field-effect transistors. Med Phys. 1996;23(5):743-54. https://doi.org/10.1118/1.597668
Boudry JM, Antonuk LE. Radiation damage of amorphous silicon photodiode sensors. IEEE Trans Nucl Sci. 1994;41(4):703-707. https://doi.org/10.1109/23.322792
Corporation VI. XRD 4343RF Flat Panel Detector Technical Specifications. https://www.vareximaging.com/wp-content/uploads/2022/01/XRD-4343RF_118912-1.pdf

Auteurs

Roman Vasyltsiv (R)

Department of Radiology, Stony Brook University, Health Sciences Center L4-120, Stony Brook, New York, USA.

Xin Qian (X)

Department of Radiation Oncology, Stony Brook University, Health Sciences Center L2, Stony Brook, New York, USA.

Zhigang Xu (Z)

Department of Radiation Oncology, Stony Brook University, Health Sciences Center L2, Stony Brook, New York, USA.

Samuel Ryu (S)

Department of Radiation Oncology, Stony Brook University, Health Sciences Center L2, Stony Brook, New York, USA.

Wei Zhao (W)

Department of Radiology, Stony Brook University, Health Sciences Center L4-120, Stony Brook, New York, USA.

Adrian Howansky (A)

Department of Radiology, Stony Brook University, Health Sciences Center L4-120, Stony Brook, New York, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH