A machine learning approach for correcting glow curve anomalies in CaSO

glow curve analysis machine learning personnel dosimeter thermoluminescence

Journal

Journal of radiological protection : official journal of the Society for Radiological Protection
ISSN: 1361-6498
Titre abrégé: J Radiol Prot
Pays: England
ID NLM: 8809257

Informations de publication

Date de publication:
13 07 2023
Historique:
received: 10 05 2023
accepted: 04 07 2023
medline: 14 7 2023
pubmed: 5 7 2023
entrez: 4 7 2023
Statut: epublish

Résumé

The study presents a novel approach to analysing the thermoluminescence (TL) glow curves (GCs) of CaSO

Identifiants

pubmed: 37402358
doi: 10.1088/1361-6498/ace3d3
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

Creative Commons Attribution license.

Auteurs

Munir S Pathan (MS)

Radiological Physics & Advisory Division, Health, Safety & Environment Group, Bhabha Atomic Research Centre, Mumbai, India.
Homi Bhabha National Institute, Mumbai, India.

S M Pradhan (SM)

Radiological Physics & Advisory Division, Health, Safety & Environment Group, Bhabha Atomic Research Centre, Mumbai, India.
Homi Bhabha National Institute, Mumbai, India.

T Palani Selvam (TP)

Radiological Physics & Advisory Division, Health, Safety & Environment Group, Bhabha Atomic Research Centre, Mumbai, India.
Homi Bhabha National Institute, Mumbai, India.

B K Sapra (BK)

Radiological Physics & Advisory Division, Health, Safety & Environment Group, Bhabha Atomic Research Centre, Mumbai, India.
Homi Bhabha National Institute, Mumbai, India.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
1.00
Humans Magnetic Resonance Imaging Brain Infant, Newborn Infant, Premature
Humans Algorithms Software Artificial Intelligence Computer Simulation

Unsupervised learning for real-time and continuous gait phase detection.

Dollaporn Anopas, Yodchanan Wongsawat, Jetsada Arnin
1.00
Humans Gait Neural Networks, Computer Unsupervised Machine Learning Walking

Classifications MeSH