QSAR modeling of pyrazoline derivative as carbonic anhydrase inhibitors.
Carbonic anhydrase
DFT
MLR
QSAR
Journal
Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769
Informations de publication
Date de publication:
05 Jul 2023
05 Jul 2023
Historique:
received:
08
02
2023
accepted:
12
06
2023
medline:
5
7
2023
pubmed:
5
7
2023
entrez:
5
7
2023
Statut:
aheadofprint
Résumé
The efficacy of 34 pyrazoline derivatives as carbonic anhydrase inhibitors was studied in silico. The quantum descriptors were calculated by the DFT/B3LYP method using the 6-31G(d) basis; the dataset was randomly divided into training and testing. By altering the compounds in the sets, four models were created, and they were then used to determine the predicted pIC50 values for the six chemicals in the test set. According to the OECD guidelines for QSAR model validation and the Golbraikh and Tropsha's criteria for model approval, each created model was independently validated both internally and externally, along with YRandomization. Model 3 is chosen because it has higher R
Identifiants
pubmed: 37405604
doi: 10.1007/s11356-023-28277-3
pii: 10.1007/s11356-023-28277-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Alafeefy AM, Abdel-Aziz HA, Carta F, Supuran CT, Pathak SK, Prasad O, Sinha L (2015) Exploring QSARs of some benzenesulfonamides incorporating cyanoacrylamide moieties as a carbonic anhydrase inhibitors (specifically against tumor-associated isoforms IX and XII). J Enzyme Inhib Med Chem 30(4):519–523. https://doi.org/10.3109/14756366.2014.948435
doi: 10.3109/14756366.2014.948435
Eroğlu E (2019) DFT-based QSAR modelling of selectivity and inhibitory activity of coumarins and sulfocoumarins against tumor-associated carbonic anhydrase isoform IX. Comput Biol Chem 80:307–313. https://doi.org/10.1016/j.compbiolchem.2019.04.011
doi: 10.1016/j.compbiolchem.2019.04.011
Gaussian_09_ReferenceManual.pdf (2022) Retrieved May 19, 2022, from https://www.cwu.edu/chemistry/sites/cts.cwu.edu.chemistry/files/documents/Gaussian_09_ReferenceManual.pdf
Gopinath P, Kathiravan MK (2022) Molecular field-based QSAR studies and docking analysis of mercaptoquinazolinone benzene sulfonamide derivatives against hCA XII. Rasayan J Chem 15(01):686–699. https://doi.org/10.31788/RJC.2022.1516767
doi: 10.31788/RJC.2022.1516767
Hilvo M, Baranauskiene L, Salzano AM, Scaloni A, Matulis D, Innocenti A, Scozzafava A, Monti SM, Fiore AD, Simone GD, Lindfors M, Jänis J, Valjakka J, Pastoreková S, Pastorek J, Kulomaa MS, Nordlund HR, Supuran CT, Parkkila S (2008) Biochemical characterization of CA IX, one of the most active carbonic anhydrase isozymes *. J Biol Chem 283(41):27799–27809. https://doi.org/10.1074/jbc.M800938200
doi: 10.1074/jbc.M800938200
Jaakkola P, Mole DR, Tian Y-M, Wilson MI, Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292(5516):468–472. https://doi.org/10.1126/science.1059796
doi: 10.1126/science.1059796
Josse J, Husson F, Pagès J (2009) Gestion des données manquantes en Analyse en Composantes Principales. J De La Société Française De Statistique 150(2):28–51. http://www.numdam.org/item/JSFS_2009__150_2_28_0/ . Accessed 19 May 2022
Kivelä A, Parkkila S, Saarnio J, Karttunen TJ, Kivelä J, Parkkila A-K, Waheed A, Sly WS, Grubb JH, Shah G, Türeci Ö, Rajaniemi H (2000) Expression of a novel transmembrane carbonic anhydrase isozyme XII in normal human gut and colorectal tumors. Am J Pathol 156(2):577–584. https://doi.org/10.1016/S0002-9440(10)64762-1
doi: 10.1016/S0002-9440(10)64762-1
Kumar V, Roy K (2020) Development of a simple, interpretable and easily transferable QSAR model for quick screening antiviral databases in search of novel 3C-like protease (3CLpro) enzyme inhibitors against SARS-CoV diseases. SAR QSAR Environ Res 31(7):511–526. https://doi.org/10.1080/1062936X.2020.1776388
doi: 10.1080/1062936X.2020.1776388
Lee M, Vecchio-Pagán B, Sharma N, Waheed A, Li X, Raraigh KS, Robbins S, Han ST, Franca AL, Pellicore MJ, Evans TA, Arcara KM, Nguyen H, Luan S, Belchis D, Hertecant J, Zabner J, Sly WS, Cutting GR (2016) Loss of carbonic anhydrase XII function in individuals with elevated sweat chloride concentration and pulmonary airway disease. Hum Mol Genet 25(10):1923–1933. https://doi.org/10.1093/hmg/ddw065
doi: 10.1093/hmg/ddw065
Li Z, Wan H, Shi Y, Ouyang P (2004) Personal experience with four kinds of chemical structure drawing software: review on ChemDraw, ChemWindow, ISIS/Draw, and ChemSketch. J Chem Inf Comput Sci 44(5):1886–1890. https://doi.org/10.1021/ci049794h
doi: 10.1021/ci049794h
Matysiak J, Skrzypek A, Tarasiuk P, Mojzych M (2017) QSAR study of pyrazolo[4,3-e][1,2,4]triazine sulfonamides against tumor-associated human carbonic anhydrase isoforms IX and XII. Comput Biol Chem 71:57–62. https://doi.org/10.1016/j.compbiolchem.2017.09.006
doi: 10.1016/j.compbiolchem.2017.09.006
Mendelsohn LD (2004) ChemDraw 8 Ultra, Windows and Macintosh Versions. J Chem Inf Comput Sci 44(6):2225–2226. https://doi.org/10.1021/ci040123t
doi: 10.1021/ci040123t
Mishra CB, Tiwari M, Supuran CT (2020) Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: where are we today? Med Res Rev 40(6):2485–2565. https://doi.org/10.1002/med.21713
doi: 10.1002/med.21713
Moi D, Nocentini A, Deplano A, Balboni G, Supuran CT, Onnis V (2019) Structure-activity relationship with pyrazoline-based aromatic sulfamates as carbonic anhydrase isoforms I, II, IX and XII inhibitors: synthesis and biological evaluation. Eur J Med Chem 182:111638. https://doi.org/10.1016/j.ejmech.2019.111638
doi: 10.1016/j.ejmech.2019.111638
Rivero P, García-Suárez VM, Pereñiguez D, Utt K, Yang Y, Bellaiche L, Park K, Ferrer J, Barraza-Lopez S (2015) Systematic pseudopotentials from reference eigenvalue sets for DFT calculations. Comput Mater Sci 98:372–389. https://doi.org/10.1016/j.commatsci.2014.11.026
doi: 10.1016/j.commatsci.2014.11.026
Vidal NP, Manful CF, Pham TH, Stewart P, Keough D, Thomas RH (2020) The use of XLSTAT in conducting principal component analysis (PCA) when evaluating the relationships between sensory and quality attributes in grilled foods. MethodsX 7:100835. https://doi.org/10.1016/j.mex.2020.100835
doi: 10.1016/j.mex.2020.100835
Wang Z-C, Qin Y-J, Wang P-F, Yang Y-A, Wen Q, Zhang X, Qiu H-Y, Duan Y-T, Wang Y-T, Sang Y-L, Zhu H-L (2013) Sulfonamides containing coumarin moieties selectively and potently inhibit carbonic anhydrases II and IX: design, synthesis, inhibitory activity and 3D-QSAR analysis. Eur J Med Chem 66:1–11. https://doi.org/10.1016/j.ejmech.2013.04.035
doi: 10.1016/j.ejmech.2013.04.035
Yorulmaz N, Eroğlu E (2020) DFT based QSARs for inhibitory activity of coumarins towards tumor-associated isoform (CA XII) of carbonic anhydrases. J Mol Struct 1208:127844. https://doi.org/10.1016/j.molstruc.2020.127844
doi: 10.1016/j.molstruc.2020.127844
Zhang IY, Xu X (2021) Exploring the limits of the XYG3-type doubly hybrid approximations for the main-group chemistry: the xDH@B3LYP model. J Phys Chem Lett 12(10):2638–2644. https://doi.org/10.1021/acs.jpclett.1c00360
doi: 10.1021/acs.jpclett.1c00360
Zhou Z, Tang X, Dai W, Shi J, Chen H (2017) Nano-QSAR models for predicting cytotoxicity of metal oxide nanoparticles (MONPs) to E. coli. Can J Chem 95(8):863–866. https://doi.org/10.1139/cjc-2017-0172
doi: 10.1139/cjc-2017-0172