Inductively shunted transmons exhibit noise insensitive plasmon states and a fluxon decay exceeding 3 hours.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
05 Jul 2023
05 Jul 2023
Historique:
received:
19
05
2022
accepted:
22
06
2023
medline:
6
7
2023
pubmed:
6
7
2023
entrez:
5
7
2023
Statut:
epublish
Résumé
Currently available quantum processors are dominated by noise, which severely limits their applicability and motivates the search for new physical qubit encodings. In this work, we introduce the inductively shunted transmon, a weakly flux-tunable superconducting qubit that offers charge offset protection for all levels and a 20-fold reduction in flux dispersion compared to the state-of-the-art resulting in a constant coherence over a full flux quantum. The parabolic confinement provided by the inductive shunt as well as the linearity of the geometric superinductor facilitates a high-power readout that resolves quantum jumps with a fidelity and QND-ness of >90% and without the need for a Josephson parametric amplifier. Moreover, the device reveals quantum tunneling physics between the two prepared fluxon ground states with a measured average decay time of up to 3.5 h. In the future, fast time-domain control of the transition matrix elements could offer a new path forward to also achieve full qubit control in the decay-protected fluxon basis.
Identifiants
pubmed: 37407570
doi: 10.1038/s41467-023-39656-2
pii: 10.1038/s41467-023-39656-2
pmc: PMC10323121
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3968Subventions
Organisme : Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung)
ID : F7105
Informations de copyright
© 2023. The Author(s).
Références
Nat Mater. 2019 Aug;18(8):816-819
pubmed: 31036961
Phys Rev Lett. 2011 Dec 9;107(24):240501
pubmed: 22242979
Phys Rev Lett. 2012 Sep 28;109(13):137002
pubmed: 23030112
Nature. 2000 Jul 6;406(6791):43-6
pubmed: 10894533
Science. 2009 Oct 2;326(5949):113-6
pubmed: 19797655
Rep Prog Phys. 2017 Oct;80(10):106001
pubmed: 28682303
Phys Rev Lett. 2018 Apr 13;120(15):150503
pubmed: 29756871
Phys Rev Lett. 2013 Apr 19;110(16):160403
pubmed: 23679586
Nature. 2020 Aug;584(7822):551-556
pubmed: 32848227
Nature. 2004 Sep 9;431(7005):162-7
pubmed: 15356625
Phys Rev Lett. 1985 Oct 7;55(15):1543-1546
pubmed: 10031852
Nat Commun. 2016 Nov 03;7:12964
pubmed: 27808092
Phys Rev Lett. 2018 Apr 13;120(15):150504
pubmed: 29756860
Phys Rev Lett. 2009 Nov 20;103(21):217004
pubmed: 20366063
Phys Rev Lett. 2019 Mar 1;122(8):080502
pubmed: 30932609
Phys Rev Lett. 2016 Nov 4;117(19):190503
pubmed: 27858439
Nat Commun. 2022 Nov 12;13(1):6895
pubmed: 36371435
Nat Commun. 2021 Mar 19;12(1):1779
pubmed: 33741989
Nat Commun. 2023 Jul 5;14(1):3968
pubmed: 37407570
Phys Rev Lett. 2022 Jul 1;129(1):010502
pubmed: 35841558
Nature. 2020 Sep;585(7825):368-371
pubmed: 32939069
Sci Bull (Beijing). 2021 Sep 15;66(17):1789-1805
pubmed: 36654386
Nature. 2020 Jul;583(7817):529-532
pubmed: 32699398
Nat Commun. 2022 Apr 11;13(1):1932
pubmed: 35410327
Science. 1999 Aug 13;285(5430):1036-9
pubmed: 10446043
Nature. 2014 Apr 17;508(7496):369-72
pubmed: 24740067
Phys Rev Lett. 2002 Sep 9;89(11):117901
pubmed: 12225170