Low-dose rosmarinic acid and thymoquinone accelerate wound healing in retinal pigment epithelial cells.
Retinal damage
Rosmarinic acid
Thymoquinone
Wound Healing
Journal
International ophthalmology
ISSN: 1573-2630
Titre abrégé: Int Ophthalmol
Pays: Netherlands
ID NLM: 7904294
Informations de publication
Date de publication:
Oct 2023
Oct 2023
Historique:
received:
03
05
2023
accepted:
22
06
2023
medline:
18
9
2023
pubmed:
6
7
2023
entrez:
5
7
2023
Statut:
ppublish
Résumé
Thymoquinone (TQ) and rosmarinic acid (RA) are two biologically active compounds found in plants and that possess remarkable anti-oxidant and anti-inflammatory properties. The present study aimed to investigate the potential protective effects of RA and TQ, which have known anti-inflammatory and anti-oxidant effects, on retinal damage by establishing a wound healing model for retinal pigment epithelial cells (ARPE-19). To this end, IC50 doses of RA and TQ in ARPE-19 cells were calculated by MTT assay. Both agents were administered at IC50, IC50/2 and IC50/4 doses for wound healing assay, and wound closure percentages were analyzed. Since the best wound healing was found at IC50/4 dose (low dose) for both agents, other biochemical and molecular analyses were planned to be performed using these doses. Following low dose RA and TQ treatments, the cells were lysed and TGF-β1 and MMP-9 levels were analyzed by ELISA technique from the cell lysates obtained. In addition, the mRNA expression levels of TLR3, IFN-γ and VEGF were calculated by RT-PCR technique. Low dose of RA and TQ dramatically increased wound healing. RA may have achieved this by increasing levels of MMP-9 and TLR-3. In contrast, the mRNA expression level of VEGF remained unchanged. TQ accelerated wound healing by increasing both the protein levels of TGF-β1 and MMP-9. Furthermore, low dose of TQ decreased both TLR3 and IFN-γ mRNA expression levels. Low doses of RA and TQ were clearly demonstrated to have protective properties against possible damage to retinal pigment epithelial cells.
Identifiants
pubmed: 37407754
doi: 10.1007/s10792-023-02799-8
pii: 10.1007/s10792-023-02799-8
doi:
Substances chimiques
thymoquinone
O60IE26NUF
Transforming Growth Factor beta1
0
Matrix Metalloproteinase 9
EC 3.4.24.35
Toll-Like Receptor 3
0
Vascular Endothelial Growth Factor A
0
Anti-Inflammatory Agents
0
RNA, Messenger
0
Retinal Pigments
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3811-3821Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Nebbioso M, Franzone F, Lambiase A, Bonfiglio V, Limoli PG, Artico M, Taurone S, Vingolo EM, Greco A, Polimeni A (2022) Oxidative stress implication in retinal diseases—a review. Antioxidants 11(9):1790
pubmed: 36139862
pmcid: 9495599
doi: 10.3390/antiox11091790
Xu H, Chen M (2022) Immune response in retinal degenerative diseases—time to rethink? Prog Neurobiol 219:102350
pubmed: 36075351
doi: 10.1016/j.pneurobio.2022.102350
Rong R, Yang R, Li H, You M, Liang Z, Zeng Z, Zhou R, Xia X, Ji D (2022) The roles of mitochondrial dynamics and NLRP3 inflammasomes in the pathogenesis of retinal light damage. Ann N Y Acad Sci 1508(1):78–91
pubmed: 34741555
doi: 10.1111/nyas.14716
Duker J (2022) Retinal arterial obstruction. Ophthalmology secrets E-book 354
Farkhondeh T, Samarghandian S, Borji A (2017) An overview on cardioprotective and anti-diabetic effects of thymoquinone. Asian Pac J Trop Med 10(9):849–854
pubmed: 29080612
doi: 10.1016/j.apjtm.2017.08.020
Sakib R, Caruso F, Aktar S, Belli S, Kaur S, Hernandez M, Rossi M (2023) Antioxidant properties of thymoquinone, thymohydroquinone and black cumin (Nigella sativa L.) seed oil: scavenging of superoxide radical studied using cyclic voltammetry, DFT and single crystal X-ray diffraction. Antioxidants 12:607
pubmed: 36978853
pmcid: 10045468
doi: 10.3390/antiox12030607
Forouzanfar F, Bazzaz BS, Hosseinzadeh H (2014) Black cumin (Nigella sativa) and its constituent (thymoquinone): a review on antimicrobial effects. Iran J Basic Med Sci 17(12):929–938
pubmed: 25859296
pmcid: 4387228
Kohandel Z, Farkhondeh T, Aschner M, Samarghandian S (2021) Anti-inflammatory effects of thymoquinone and its protective effects against several diseases. Biomed Pharmacother 138:111492
pubmed: 33743334
doi: 10.1016/j.biopha.2021.111492
Gul R, Tansuker HD, Cengiz AB, Gul M, Tabaru A, Emre F, Oktay MF (2022) Effects of Nigella sativa oil on allergic rhinitis: an experimental animal study. Braz J Otorhinolaryngol 88(5):S148–S155
pubmed: 36243604
pmcid: 9801018
doi: 10.1016/j.bjorl.2022.09.003
Alhosin M, Ibrahim A, Boukhari A et al (2012) Anti-neoplastic agent thymoquinone induces degradation of α and β tubulin proteins in human cancer cells without affecting their level in normal human fibroblasts. Invest New Drugs 30:1813–1819
pubmed: 21881916
doi: 10.1007/s10637-011-9734-1
Selçuk CT, Durgun M, Tekin R, Yolbas L, Bozkurt M, Akçay C, Alabalık U, Basarali MK (2013) Evaluation of the effect of thymoquinone treatment on wound healing in a rat burn model. J Burn Care Res 34:e274–e281
pubmed: 23816998
doi: 10.1097/BCR.0b013e31827a2be1
Yusmin A, Ahmad N (2017) Effect of thymoquinone on wound healing in alloxan-induced diabetic rats. Asian J Pharm Clin Res 10:242–245
doi: 10.22159/ajpcr.2017.v10i9.18951
Sallehuddin N, Nordin A, Bt Hj Idrus R, Fauzi MB (2020) Nigella sativa and its active compound, thymoquinone, accelerate wound healing in an in vivo animal model: a comprehensive review. Int J Environ Res Public Health 17(11):4160
pubmed: 32545210
pmcid: 7312523
doi: 10.3390/ijerph17114160
Hayat K, Asim MB, Nawaz M, Li M, Zhang L, Sun N (2011) Ameliorative effect of thymoquinone on ovalbumin-induced allergic conjunctivitis in Balb/c mice. Curr Eye Res 36(7):591–598
pubmed: 21604966
doi: 10.3109/02713683.2011.573898
Fouad AA, Alwadani F (2015) Ameliorative effects of thymoquinone against eye lens changes in streptozotocin diabetic rats. Environ Toxicol Pharmacol 40(3):960–965. https://doi.org/10.1016/j.etap.2015.09.010
doi: 10.1016/j.etap.2015.09.010
pubmed: 26544518
Fahmy HM, Saad EAES, Sabra NM, El-Gohary AA, Mohamed FF, Gaber MH (2018) Treatment merits of latanoprost/thymoquinone—encapsulated liposome for glaucomatus rabbits. Int J Pharm 548(1):597–608. https://doi.org/10.1016/j.ijpharm.2018.07.012
doi: 10.1016/j.ijpharm.2018.07.012
pubmed: 29997042
Petersen M, Simmonds MS (2003) Rosmarinic acid. Phytochemistry 62(2):121–125
pubmed: 12482446
doi: 10.1016/S0031-9422(02)00513-7
Luo C, Zou L, Sun H, Peng J, Gao C, Bao L, Ji R, Sun S (2020) A review of the anti-inflammatory effects of rosmarinic acid on inflammatory diseases. Front Pharmacol 11:153
pubmed: 32184728
pmcid: 7059186
doi: 10.3389/fphar.2020.00153
Zhang J, Cui X, Zhang M, Bai B, Yang Y, Fan S (2022) The antibacterial mechanism of perilla rosmarinic acid. Biotechnol Appl Biochem 69(4):1757–1764
pubmed: 34490944
doi: 10.1002/bab.2248
Panchal R, Ghosh S, Mehla R, Ramalingam J, Gairola S, Mukherjee S, Chowdhary A (2022) Antiviral activity of rosmarinic acid against four serotypes of dengue virus. Curr Microbiol 79(7):203
pubmed: 35612625
doi: 10.1007/s00284-022-02889-3
Gao LP, Wei HL, Zhao HS, Xiao SY, Zheng RL (2005) Antiapoptotic and antioxidant effects of rosmarinic acid in astrocytes. Die Pharmazie-An Int J Pharm Sci 60(1):62–65
Küba MC, Türkoğlu A, Oğuz A, Tuncer MC, Kaya Ş, Başol Ö et al (2021) Comparison of local rosmarinic acid and topical dexpanthenol applications on wound healing in a rat experimental wound model. Folia Morphol 80(3):618–624
doi: 10.5603/FM.a2020.0097
Hossen MJ, Yang WS, Kim D, Aravinthan A, Kim JH, Cho JY (2017) Thymoquinone: an IRAK1 inhibitor with in vivo and in vitro anti-inflammatory activities. Sci Rep 7:42995
pubmed: 28216638
pmcid: 5316937
doi: 10.1038/srep42995
Domitrović R, Skoda M, Vasiljev Marchesi V, Cvijanović O, Pernjak Pugel E, Stefan MB (2013) Rosmarinic acid ameliorates acute liver damage and fibrogenesis in carbon tetrachloride-intoxicated mice. Food Chem Toxicol 51:370–378
pubmed: 23116643
doi: 10.1016/j.fct.2012.10.021
Hu X, Liang Y, Zhao B, Wang Y (2018). Thymoquinone protects human retinal pigment epithelial cells against hydrogen peroxide induced oxidative stress and apoptosis. J Cell Biochem 1–9
Kim JH, Lee BJ, Kim JH, Yu YS, Kim MY, Kim KW (2009) Rosmarinic acid suppresses retinal neovascularization via cell cycle arrest with increase of p21
pubmed: 19470386
doi: 10.1016/j.ejphar.2009.05.015
Webster L, Chignell AH, Limb GA (1999) Predominance of MMP-1 and MMP-2 in epiretinal and subretinal membranes of proliferative vitreoretinopathy. Exp Eye Res 68(1):91–98
pubmed: 9986746
doi: 10.1006/exer.1998.0585
Gonzalez-Avila G, Mendez D, Lozano D, Ramos C, Delgado J, Iturria C (2004) Role of retinal detachment subretinal fluid on extracellular matrix metabolism. Ophthalmologica 218(1):49–56
pubmed: 14688436
doi: 10.1159/000074567
Nagineni NC, Samuel W, Nagineni S, Pardhasaradhi K, Wiggert B, Detrick B, Hooks JJ (2003) Transforming growth factor-β induces expression of vascular endothelial growth factor in human retinal pigment epithelial cells: Involvement of mitogen-activated protein kinases. J Cell Physiol 197(3):453–462
pubmed: 14566975
doi: 10.1002/jcp.10378
Kumar MV, Nagineni CN, Chin MS, Hooks JJ, Detrick B (2004) Innate immunity in the retina: toll-like receptor (TLR) signaling in human retinal pigment epithelial cells. J Neuroimmunol 153(1–2):7–15
pubmed: 15265658
pmcid: 7119465
doi: 10.1016/j.jneuroim.2004.04.018
Lin Q, Fang D, Fang J, Ren X, Yang X, Wen F, Su SB (2011) Impaired wound healing with defective expression of chemokines and recruitment of myeloid cells in TLR3-deficient mice. J Immunol 186(6):3710–3717
pubmed: 21317384
doi: 10.4049/jimmunol.1003007
Kauppinen A, Paterno JJ, Blasiak J, Salminen A, Kaarniranta K (2016) Inflammation and its role in age-related macular degeneration. Cell Mol Life Sci 73(9):1765–1786
pubmed: 26852158
pmcid: 4819943
doi: 10.1007/s00018-016-2147-8
Guo S, Dipietro LA (2010) Factors affecting wound healing. J Dent Res 89(3):219–229
pubmed: 20139336
pmcid: 2903966
doi: 10.1177/0022034509359125
Roupé KM, Nybo M, Sjöbring U, Alberius P, Schmidtchen A, Sørensen OE (2010) Injury is a major inducer of epidermal innate immune responses during wound healing. J Invest Dermatol 130(4):1167–1177
pubmed: 19727116
doi: 10.1038/jid.2009.284
Qian LW, Fourcaudot AB, Yamane K, You T, Chan RK, Leung KP (2016) Exacerbated and prolonged inflammation impairs wound healing and increases scarring. Wound Repair Regen 24(1):26–34
pubmed: 26562746
doi: 10.1111/wrr.12381
Ferrara N (2009) Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol 29(6):789–791
pubmed: 19164810
doi: 10.1161/ATVBAHA.108.179663
Bao P, Kodra A, Tomic-Canic M, Golinko MS, Ehrlich HP, Brem H (2009) The role of vascular endothelial growth factor in wound healing. J Surg Res 153(2):347–358
pubmed: 19027922
doi: 10.1016/j.jss.2008.04.023
Yen JH, Chio WT, Chuang CJ, Yang HL, Huang ST (2022) Improved wound healing by naringin associated with MMP and the VEGF pathway. Molecules 27(5):1695
pubmed: 35268795
pmcid: 8911856
doi: 10.3390/molecules27051695
Shams F, Moravvej H, Hosseinzadeh S, Mostafavi E, Bayat H, Kazemi B, Bandehpour M, Rostami E, Rahimpour A, Moosavian H (2022) Overexpression of VEGF in dermal fibroblast cells accelerates the angiogenesis and wound healing function: in vitro and in vivo studies. Sci Rep 12(1):18529
pubmed: 36323953
pmcid: 9630276
doi: 10.1038/s41598-022-23304-8
Zha W, Wang J, Guo Z, Zhang Y, Wang Y, Dong S, Liu C, Xing H, Li X (2023) Efficient delivery of VEGF-A mRNA for promoting diabetic wound healing via ionizable lipid nanoparticles. Int J Pharm 632:122565
pubmed: 36586634
doi: 10.1016/j.ijpharm.2022.122565
Browning DJ, Stewart MW, Lee C (2018) Diabetic macular edema: evidence-based management. Indian J Ophthalmol 66(12):1736–1750
pubmed: 30451174
pmcid: 6256891
doi: 10.4103/ijo.IJO_1240_18
Apte RS, Chen DS, Ferrara N (2019) VEGF in signaling and disease: beyond discovery and development. Cell 176(6):1248–1264
pubmed: 30849371
pmcid: 6410740
doi: 10.1016/j.cell.2019.01.021
Uemura A, Fruttiger M, D’Amore PA, De Falco S, Joussen AM, Sennlaub F, Brunck LR, Johnson KT, Lambrou GN, Rittenhouse KD, Langmann T (2021) VEGFR1 signaling in retinal angiogenesis and microinflammation. Prog Retin Eye Res 84:100954
pubmed: 33640465
pmcid: 8385046
doi: 10.1016/j.preteyeres.2021.100954
Datlibagi A, Zein-El-Din A, Frohly M, Willermain F, Delporte C, Motulsky E (2023) Experimental models to study epithelial–mesenchymal transition in proliferative vitreoretinopathy. Int J Mol Sci 24(5):4509
pubmed: 36901938
pmcid: 10003383
doi: 10.3390/ijms24054509
He H, Kuriyan AE, Su CW, Mahabole M, Zhang Y, Zhu YT, Flynn HW, Parel JM, Tseng SC (2017) Inhibition of proliferation and epithelial mesenchymal transition in retinal pigment epithelial cells by heavy chain-hyaluronan/pentraxin 3. Sci Rep 7:43736
pubmed: 28252047
pmcid: 5333089
doi: 10.1038/srep43736
Chen HC, Zhu YT, Chen SY, Tseng SC (2012) Wnt signaling induces epithelial–mesenchymal transition with proliferation in ARPE-19 cells upon loss of contact inhibition. Lab Invest 92(5):676–687
pubmed: 22391957
pmcid: 3961713
doi: 10.1038/labinvest.2011.201