Affect variability and physical health: The moderating role of mean affect.
affect
affect dynamics
affect variability
physical health
Journal
Applied psychology. Health and well-being
ISSN: 1758-0854
Titre abrégé: Appl Psychol Health Well Being
Pays: England
ID NLM: 101502957
Informations de publication
Date de publication:
11 2023
11 2023
Historique:
received:
12
10
2022
accepted:
12
05
2023
medline:
6
11
2023
pubmed:
6
7
2023
entrez:
6
7
2023
Statut:
ppublish
Résumé
Research has only begun to explore how affect variability relates to physical health and has typically not assessed long-term associations nor considered the moderating role of mean affect. Therefore, we used data from the Midlife in the United States Study waves 2 (N = 1512) and 3 (N = 1499) to test how affect variability predicted concurrent and long-term physical health while also testing the moderating role of mean affect. Results indicated that greater negative affect variability was associated concurrently with a greater number of chronic conditions (p = .03) and longitudinally with worse self-rated physical health (p < .01). Greater positive affect variability was associated concurrently with more chronic conditions (p < .01) and medications (p < .01) and longitudinally with worse self-rated physical health (p = .04). Further, mean negative affect played a moderating role such that at lower levels of mean negative affect, as affect variability increased, so did the number of concurrent chronic conditions (p < .01) and medications (p = .03) and the likelihood of reporting worse long-term self-rated physical health (p < .01). Thus, the role of mean affect should be considered when testing short- and long-term associations between affect variability and physical health.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1637-1655Informations de copyright
© 2023 The Authors. Applied Psychology: Health and Well-Being published by John Wiley & Sons Ltd on behalf of International Association of Applied Psychology.
Références
Aban, I. B., Cutter, G. R., & Mavinga, N. (2009). Inferences and power analysis concerning two negative binomial distributions with an application to MRI lesion counts data. Computational Statistics and Data Analysis, 53(3), 820-833. https://doi.org/10.1016/j.csda.2008.07.034
Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Sage.
Chan, D. K. C., Zhang, X., Fung, H. H., & Hagger, M. S. (2016). Affect, affective variability, and physical health: Results from a population-based investigation in China. International Journal of Behavioral Medicine, 23(4), 438-446. https://doi.org/10.1007/s12529-015-9510-2
Cheng, C., Bond, M. H., & Chan, S. C. (1995). The perception of ideal best friends by Chinese adolescents. International Journal of Psychology, 30(1), 91-108. https://doi.org/10.1080/00207599508246975
Connelly, M., Bromberg, M. H., Anthony, K. K., Gil, K. M., Franks, L., & Schanberg, L. E. (2012). Emotion regulation predicts pain and functioning in children with juvenile idiopathic arthritis: An electronic diary study. Journal of Pediatric Psychology, 37(1), 43-52. https://doi.org/10.1093/jpepsy/jsr088
Dejonckheere, E., Mestdagh, M., Houben, M., Rutten, I., Sels, L., Kuppens, P., & Tuerlinckx, F. (2019). Complex affect dynamics add limited information to the prediction of psychological well-being. Nature Human Behaviour, 3, 478-491. https://doi.org/10.1038/s41562-019-0555-0
Dickey, A. S., Krafty, R. T., & Pedersen, N. P. (2022). Ordinal regression increases statistical power to predict epilepsy surgical outcomes. Epilepsia Open, 7(2), 344-349. https://doi.org/10.1002/epi4.12585
Ebner-Priemer, U. W., Eid, M., Kleindienst, N., Stabenow, S., & Trull, T. J. (2009). Analytic strategies for understanding affective (in)stability and other dynamic processes in psychopathology. Journal of Abnormal Psychology, 118(1), 195-202. https://doi.org/10.1037/a0014868
Eid, M., & Diener, E. (1999). Intraindividual variability in affect: Reliability, validity, and personality correlates. Journal of Personality and Social Psychology, 76, 662-676. https://doi.org/10.1037/0022-3514.76.4.662
Funder, D. C., & Ozer, D. J. (2019). Evaluating effect size in psychological research: Sense and nonsense. Advances in Methods and Practices in Psychological Science, 2(2), 156-168. https://doi.org/10.1177/2515245919847202
Gruber, J., Kogan, A., Quoidbach, J., & Mauss, I. B. (2013). Happiness is best kept stable: Positive emotion variability is associated with poorer psychological health. Emotion, 13, 1-6. https://doi.org/10.1037/a0030262
Hardy, J., & Segerstrom, S. C. (2016). Intra-individual variability and psychological flexibility: Affect and health in a national US sample. Journal of Research in Personality.
Houben, M., Van Den Noortgate, W., & Kuppens, P. (2015). The relation between short-term emotion dynamics and psychological well-being: A meta-analysis. Psychological Bulletin, 141, 901-930. https://doi.org/10.1037/a0038822
Human, L. J., Whillans, A. V., Hoppmann, C. A., Klumb, P., Dickerson, S. S., & Dunn, E. W. (2015). Finding the middle ground: Curvilinear associations between positive affect variability and daily cortisol profiles. Emotion, 15, 705-720. https://doi.org/10.1037/emo0000071
Jenkins, B. N., Cross, M. P., Donaldson, C. D., Pressman, S. D., Fortier, M. A., Kain, Z. N., Cohen, S., Martin, L. T., & Farkas, G. (2021). The subcomponents of affect scale (SAS): Validating a widely used affect scale. Psychology & Health, 1-19.
Jenkins, B. N., Hunter, J. F., Cross, M. P., Acevedo, A. M., & Pressman, S. D. (2018). When is affect variability bad for health? The association between affect variability and immune response to the influenza vaccination. Journal of Psychosomatic Research, 104(October 2017), 41-47. https://doi.org/10.1016/j.jpsychores.2017.11.002
Jenkins, B. N., Hunter, J. F., Richardson, M. J., Conner, T. S., & Pressman, S. D. (2020). Affect variability and predictability: Using recurrence quantification analysis to better understand how the dynamics of affect relate to health. Emotion, 20(3), 391-402. https://doi.org/10.1037/emo0000556
Jones, D. R., Smyth, J. M., Engeland, C. G., Sliwinski, M. J., Russell, M. A., Sin, N. L., Almeida, D. M., & Graham-Engeland, J. E. (2020). Affect variability and inflammatory markers in midlife adults. Health Psychology., 39, 655-666. https://doi.org/10.1037/hea0000868
Keng, S. L., Tong, E. M. W., Yan, E. T. L., Ebstein, R. P., & Lai, P. S. (2021). Effects of mindfulness-based stress reduction on affect dynamics: A randomized controlled trial. Mindfulness, 12(6), 1490-1501. https://doi.org/10.1007/s12671-021-01617-5
Kok, B. E., Coffey, K. A., Cohn, M. A., Catalino, L. I., Vacharkulksemsuk, T., Algoe, S. B., Brantley, M., & Fredrickson, B. L. (2013). How positive emotions build physical health: Perceived positive social connections account for the upward spiral between positive emotions and vagal tone. Psychological Science, 24, 1123-1132. https://doi.org/10.1177/0956797612470827
Koval, P., Ogrinz, B., Kuppens, P., Van Den Bergh, O., Tuerlinckx, F., & Sütterlin, S. (2013). Affective instability in daily life is predicted by resting heart rate variability. PLoS ONE, 8(11), e81536. https://doi.org/10.1371/journal.pone.0081536
Leger, K. A., Charles, S. T., & Fingerman, K. L. (2019). Affect variability and sleep: Emotional ups and downs are related to a poorer night's rest. Journal of Psychosomatic Research, 124(July), 109758. https://doi.org/10.1016/j.jpsychores.2019.109758
Meyer, J. (2020). Poisson or negative binomial? Using count model diagnostics to select a model. The analysis factor. https://www.theanalysisfactor.com/poisson-or-negative-binomial-using-count-model-diagnostics-to-select-a-model/
Mohr, C., Arpin, S., & McCabe, C. (2015). Daily affect variability and context-specific alcohol consumption. Drug and Alcohol Review, 34(6), 581-587. https://doi.org/10.1111/dar.12253
Mroczek, D. K., & Kolarz, C. M. (1998). The effect of age on positive and negative affect: A developmental perspective on happiness. Journal of Personality and Social Psychology, 75, 1333-1349. https://doi.org/10.1037/0022-3514.75.5.1333
Ong, A. D., & Ram, N. (2017). Fragile and enduring positive affect: Implications for adaptive aging. Gerontology, 63, 263-269. https://doi.org/10.1159/000453357
Ong, A. D., & Steptoe, A. (2020). Association of positive affect instability with all-cause mortality in older adults in England. JAMA Network Open, 3(7), e207725. https://doi.org/10.1001/jamanetworkopen.2020.7725
Pacella, M. L., Hruska, B., George, R. L., & Delahanty, D. L. (2018). The role of negative affect on headache-related disability following traumatic physical injury. Headache: The Journal of Head and Face Pain, 58(3), 381-398. https://doi.org/10.1111/head.13233
Park, C. L., Kubzansky, L., Chafouleas, S., Davidson, R., Keltner, D., Parsafar, P., Conwell, Y., Martin, M., Hamner, J., & Wang, H. W. (2022). Emotional well-being: What it is and why it matters. Affective Science, 1-11.
Peeters, F., Berkhof, J., Delespaul, P., Rottenberg, J., & Nicolson, N. A. (2006). Diurnal mood variation in major depressive disorder. Emotion, 6, 383-391. https://doi.org/10.1037/1528-3542.6.3.383
Perneger, T. (1998). What's wrong with Bonferroni adjustments. BMJ, 316(7139), 1236-1238. https://doi.org/10.1136/bmj.316.7139.1236
Pressman, S. D., & Cross, M. P. (2018). Moving beyond a one-size-fits-all view of positive affect in health research. Current Directions in Psychological Science, 27(5), 339-344. https://doi.org/10.1177/0963721418760214
Pressman, S. D., Jenkins, B. N., Kraft-Feil, T. L., Rasmussen, H., & Scheier, M. F. (2017). The whole is not the sum of its parts: Specific types of positive affect influence sleep differentially. Emotion, 17(5), 778-793. https://doi.org/10.1037/emo0000256
R Core Team. (2021). R: A language and environment for statistical computing. Foundation for Statistical Computing. https://www.r-project.org/
Rast, P., Rush, J., Piccinin, A., & Hofer, S. M. (2014). The identification of regions of significance in the effect of multimorbidity on depressive symptoms using longitudinal data: An application of the Johnson-Neyman technique. Gerontology, 60(3), 274-281. https://doi.org/10.1159/000358757
Röcke, C., Li, S.-C., & Smith, J. (2009). Intraindividual variability in positive and negative affect over 45 days: Do older adults fluctuate less than young adults? Psychology and Aging, 24, 863-878. https://doi.org/10.1037/a0016276
Rost, S., Van Ryckeghem, D. M. L., Koval, P., Sütterlin, S., Vögele, C., & Crombez, G. (2016). Affective instability in patients with chronic pain: A diary approach. Pain, 157(8), 1783-1790. https://doi.org/10.1097/j.pain.0000000000000582
Ryff, C. D., Almeida, D. M., Ayanian, J. Z., Binkley, N., Carr, D. S., Coe, C., Davidson, R. J., Grzywacz, J., Karlamangla, A., Krueger, R. F., Lachman, M. E., Love, G., Mailick, M., Mroczek, D. K., Radler, B., Seeman, T. E., Sloan, R. P., Thomas, D., Weinstein, M., & Wiliams, D. R. (2015). Midlife in the United States (MIDUS 3), 2013-2014 [Data set]. Inter-university Consortium for Political and Social Research. https://doi.org/10.3886/ICPSR36346.v7
Ryff, C. D., Almeida, D. M., Ayanian, J. Z., Carr, D. S., Cleary, P. D., Coe, C., Davidson, R. J., Krueger, R. F., Lachman, M. E., Marks, N. F., Mroczek, D. K., Seeman, T. E., Seltzer, M. M., Singer, B. H., Sloan, R. P., Tun, P. A., Weinstein, M., & Williams, D. R. (2007). Midlife in the United States (MIDUS 2), 2004-2006 [Data set]. Inter-university Consortium for Political and Social Research. https://doi.org/10.3886/ICPSR04652.v8
Sbarra, D. A., & Emery, R. E. (2005). The emotional sequelae of nonmarital relationship dissolution: Analysis of change and intraindividual variability over time. Personal Relationships, 12(2), 213-232. https://doi.org/10.1111/j.1350-4126.2005.00112.x
Scott, S. B., Sliwinski, M. J., Zawadzki, M., Stawski, R. S., Kim, J., Marcusson-Clavertz, D., Lanza, S. T., Conroy, D. E., Buxton, O., Almeida, D. M., & Smyth, J. M. (2020). A coordinated analysis of variance in affect in daily life. Assessment, 27(8), 1683-1698. https://doi.org/10.1177/1073191118799460
Sirois, B. C., & Burg, M. M. (2003). Negative emotion and coronary heart disease: A review. Behavior Modification, 27(1), 83-102. https://doi.org/10.1177/0145445502238695
Suls, J., & Bunde, J. (2005). Anger, anxiety, and depression as risk factors for cardiovascular disease: The problems and implications of overlapping affective dispositions. Psychological Bulletin, 131(2), 260-300. https://doi.org/10.1037/0033-2909.131.2.260
UCLA Group. (n.d.). Logistic regression power analysis: Stata data analysis examples. Retrieved January 19, 2023, from https://stats.oarc.ucla.edu/stata/dae/logistic-regression-power-analysis/
Urganci, B., Ong, A. D., Burrow, A. L., & DeHart, T. (2022). Linking mean level and variability in affect to changes in perceived regard: A dyadic longitudinal burst study of African American couples. Journal of Social and Personal Relationships, 1-21.
Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54, 1063-1070. https://doi.org/10.1037/0022-3514.54.6.1063
Wen, C. K. F., Liao, Y., Maher, J. P., Huh, J., Belcher, B. R., Dzubur, E., & Dunton, G. F. (2018). Relationships among affective states, physical activity, and sedentary behavior in children: Moderation by perceived stress. Health Psychology, 37(10), 904-914. https://doi.org/10.1037/hea0000639
Willroth, E. C., Graham, E. K., & Mroczek, D. K. (2020). Comparing the predictive utility of trait affect and average daily affect for the prospective prediction of health outcomes. Journal of Research in Personality, 87, 103966. https://doi.org/10.1016/j.jrp.2020.103966