Cylinder power progression associated with axial length in young children: a two-year follow-up study.
Astigmatism
Axial length
Children and adolescents
Cylinder power
Myopia
Journal
Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie
ISSN: 1435-702X
Titre abrégé: Graefes Arch Clin Exp Ophthalmol
Pays: Germany
ID NLM: 8205248
Informations de publication
Date de publication:
06 Jul 2023
06 Jul 2023
Historique:
received:
24
11
2022
accepted:
12
06
2023
revised:
06
05
2023
medline:
6
7
2023
pubmed:
6
7
2023
entrez:
6
7
2023
Statut:
aheadofprint
Résumé
To describe the association of refraction development and axial length (AL) in young children and provide new insights into the progression of cylinder power. Children (2-3 grades) were enrolled from primary schools in Shanghai and followed up for two years. Cycloplegic refraction, AL, and corneal curvature radius were measured. Refraction parameters were compared among groups with different AL, AL1 (AL < 23.5 mm), AL2 (23.5 mm ≤ AL < 24.5 mm), and AL3 (AL ≥ 24.5 mm). Multiple regression analysis was used to explore risk factors of diopter of cylinder (DC) progression. In total, out of 6891 enrolled children, 5961 participants (7-11 yrs) were included in the final analysis. Over the two-year period, the cylinder power significantly changed, and those with longer AL had more rapid DC progression over the two years (AL1, -0.09 ± 0.35 D; AL2, -0.15 ± 0.39 D; AL3, -0.29 ± 0.44 D) (P < 0.001). The change in DC was independently associated with AL at baseline (P < 0.001). The proportion of with-the-rule astigmatism increased from 91.3% to 92.1% in AL1 group, from 89.1% to 91.8% in AL2 group and from 87.1% to 92.0% in AL3 group. Young children with long AL experienced rapid progression of cylinder power. Both the control of myopia progression and attention to the correction of astigmatism are necessary in the health management of children with long AL. The significantly increased AL in participants might contribute to both the extent and direction of astigmatism.
Identifiants
pubmed: 37410179
doi: 10.1007/s00417-023-06149-3
pii: 10.1007/s00417-023-06149-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Key R&D Program
ID : Program No.2019YFC0840607
Organisme : Excellent Discipline Leader Cultivation Program of Shanghai Three Year Action Plan on Strengthening Public Health System Construction
ID : GWV-10.2-XD09
Organisme : National Natural Science Foundation Young Staff
ID : Grant No.81900911
Organisme : Sailing Program
ID : Program No.18YF1420200
Informations de copyright
© 2023. The Author(s).
Références
Dolgin E (2015) The myopia boom. Nature 519:276–278. https://doi.org/10.1038/519276a
doi: 10.1038/519276a
pubmed: 25788077
Seet B, Wong TY, Tan DT, Saw SM, Balakrishnan V, Lee LK, Lim AS (2001) Myopia in Singapore: taking a public health approach. Br J Ophthalmol 85:521–526. https://doi.org/10.1136/bjo.85.5.521
doi: 10.1136/bjo.85.5.521
pubmed: 11316705
pmcid: 1723957
Wu JF, Bi HS, Wang SM, Hu YY, Wu H, Sun W, Lu TL, Wang XR, Jonas JB (2013) Refractive error, visual acuity and causes of vision loss in children in Shandong, China. The Shandong Children Eye Study. PLoS One 8:e82763
doi: 10.1371/journal.pone.0082763
pubmed: 24376575
pmcid: 3871613
Low W, Dirani M, Gazzard G, Chan YH, Zhou HJ, Selvaraj P, Au Eong KG, Young TL, Mitchell P, Wong TY, Saw SM (2010) Family history, near work, outdoor activity, and myopia in Singapore Chinese preschool children. Br J Ophthalmol 94:1012–1016. https://doi.org/10.1136/bjo.2009.173187
doi: 10.1136/bjo.2009.173187
pubmed: 20472747
Hsu WM, Cheng CY, Liu JH, Tsai SY, Chou P (2004) Prevalence and causes of visual impairment in an elderly Chinese population in Taiwan: the Shihpai Eye Study. Ophthalmology 111:62–69. https://doi.org/10.1016/j.ophtha.2003.05.011
doi: 10.1016/j.ophtha.2003.05.011
pubmed: 14711715
Xu L, Wang Y, Li Y, Wang Y, Cui T, Li J, Jonas JB (2006) Causes of blindness and visual impairment in urban and rural areas in Beijing: the Beijing Eye Study. Ophthalmology 113:1134.e1131–1111. https://doi.org/10.1016/j.ophtha.2006.01.035
doi: 10.1016/j.ophtha.2006.01.035
Saw SM, Gazzard G, Shih-Yen EC, Chua WH (2005) Myopia and associated pathological complications. Ophthalmic Physiol Opt 25:381–391. https://doi.org/10.1111/j.1475-1313.2005.00298.x
doi: 10.1111/j.1475-1313.2005.00298.x
pubmed: 16101943
Ohno-Matsui K, Wu PC, Yamashiro K, Vutipongsatorn K, Fang Y, Cheung CMG, Lai TYY, Ikuno Y, Cohen SY, Gaudric A, Jonas JB (2021) IMI Pathologic Myopia. Invest Ophthalmol Vis Sci 62:5. https://doi.org/10.1167/iovs.62.5.5
doi: 10.1167/iovs.62.5.5
pubmed: 33909033
pmcid: 8083114
Harvey EM, Miller JM, Twelker JD, Sherrill DL (2014) Longitudinal change and stability of refractive, keratometric, and internal astigmatism in childhood. Invest Ophthalmol Vis Sci 56:190–198. https://doi.org/10.1167/iovs.14-13898
doi: 10.1167/iovs.14-13898
pubmed: 25515577
Chan SE, Kuo HK, Tsai CL, Wu PC (2018) Astigmatism in Chinese primary school children: prevalence, change, and effect on myopic shift. Jpn J Ophthalmol 62:321–326. https://doi.org/10.1007/s10384-018-0580-y
doi: 10.1007/s10384-018-0580-y
pubmed: 29500535
Ma Y, Zou H, Lin S, Xu X, Zhao R, Lu L, Zhao H, Li Q, Wang L, Zhu J, He X (2018) Cohort study with 4-year follow-up of myopia and refractive parameters in primary schoolchildren in Baoshan District, Shanghai. Clin Exp Ophthalmol 46:861–872. https://doi.org/10.1111/ceo.13195
doi: 10.1111/ceo.13195
pubmed: 29577563
pmcid: 6282580
Fulton AB, Hansen RM, Petersen RA (1982) The relation of myopia and astigmatism in developing eyes. Ophthalmology 89:298–302. https://doi.org/10.1016/s0161-6420(82)34788-0
doi: 10.1016/s0161-6420(82)34788-0
pubmed: 7099549
Kaye SB, Patterson A (1997) Association between total astigmatism and myopia. J Cataract Refract Surg 23:1496–1502. https://doi.org/10.1016/s0886-3350(97)80020-x
doi: 10.1016/s0886-3350(97)80020-x
pubmed: 9456407
Tong L, Saw SM, Carkeet A, Chan WY, Wu HM, Tan D (2002) Prevalence rates and epidemiological risk factors for astigmatism in Singapore school children. Optom Vis Sci 79:606–613. https://doi.org/10.1097/00006324-200209000-00012
doi: 10.1097/00006324-200209000-00012
pubmed: 12322931
Pärssinen O, Kauppinen M (2017) Anisometropia of spherical equivalent and astigmatism among myopes: a 23-year follow-up study of prevalence and changes from childhood to adulthood. Acta Ophthalmol 95:518–524. https://doi.org/10.1111/aos.13405
doi: 10.1111/aos.13405
pubmed: 28481050
Pärssinen O, Kauppinen M, Viljanen A (2015) Astigmatism among myopics and its changes from childhood to adult age: a 23-year follow-up study. Acta Ophthalmol 93:276–283. https://doi.org/10.1111/aos.12572
doi: 10.1111/aos.12572
pubmed: 25384542
Shao X, Zhou KJ, Pan AP, Cheng XY, Cai HX, Huang JH, Yu AY (2017) Age-related changes in corneal astigmatism. J Refract Surg 33:696–703. https://doi.org/10.3928/1081597x-20170718-04
doi: 10.3928/1081597x-20170718-04
pubmed: 28991338
Xiong S, He X, Deng J, Lv M, Jin J, Sun S, Yao C, Zhu J, Zou H, Xu X (2017) Choroidal thickness in 3001 Chinese children aged 6 to 19 years using swept-source OCT. Sci Rep 7:45059. https://doi.org/10.1038/srep45059
doi: 10.1038/srep45059
pubmed: 28327553
pmcid: 5361145
Rozema J, Dankert S, Iribarren R, Lanca C, Saw SM (2019) Axial growth and lens power loss at myopia onset in singaporean children. Invest Ophthalmol Vis Sci 60:3091–3099. https://doi.org/10.1167/iovs.18-26247
doi: 10.1167/iovs.18-26247
pubmed: 31323091
Leung TW, Lam AK, Deng L, Kee CS (2012) Characteristics of astigmatism as a function of age in a Hong Kong clinical population. Optom Vis Sci 89:984–992. https://doi.org/10.1097/OPX.0b013e31825da156
doi: 10.1097/OPX.0b013e31825da156
pubmed: 22705776
Kame RT, Jue TS, Shigekuni DM (1993) A longitudinal study of corneal astigmatism changes in Asian eyes. J Am Optom Assoc 64:215–219
pubmed: 8454841
Goss DA (1989) Meridional analysis of with-the-rule astigmatism in Oklahoma Indians. Optom Vis Sci 66:281–287. https://doi.org/10.1097/00006324-198905000-00005
doi: 10.1097/00006324-198905000-00005
pubmed: 2787491
Gwiazda J, Scheiman M, Mohindra I, Held R (1984) Astigmatism in children: changes in axis and amount from birth to six years. Invest Ophthalmol Vis Sci 25:88–92
pubmed: 6698734
Lee DC (2020) Analysis of corneal real astigmatism and high order aberration changes that cause visual disturbances after lower eyelid epiblepharon repair surgery. Sci Rep 10:7498. https://doi.org/10.1038/s41598-020-64386-6
doi: 10.1038/s41598-020-64386-6
pubmed: 32366891
pmcid: 7198593
Rhim JW, Eom Y, Park SY, Kang SY, Song JS, Kim HM (2020) Eyelid squinting improves near vision in against-the-rule and distance vision in with-the-rule astigmatism in pseudophakic eyes: an eye model experimental study. BMC Ophthalmol 20:4. https://doi.org/10.1186/s12886-019-1297-5
doi: 10.1186/s12886-019-1297-5
pubmed: 31898509
pmcid: 6941361
Namba H, Sugano A, Murakami T, Utsunomiya H, Nishitsuka K, Ishizawa K, Kayama T, Yamashita H (2020) Age-related changes in astigmatism and potential causes. Cornea 39(Suppl 1):S34-s38. https://doi.org/10.1097/ico.0000000000002507
doi: 10.1097/ico.0000000000002507
pubmed: 33038156
Preechawai P, Amrith S, Wong I, Sundar G (2007) Refractive changes in epiblepharon. Am J Ophthalmol 143:835–839. https://doi.org/10.1016/j.ajo.2007.01.043
doi: 10.1016/j.ajo.2007.01.043
pubmed: 17362867
Tong L, Saw SM, Lin Y, Chia KS, Koh D, Tan D (2004) Incidence and progression of astigmatism in Singaporean children. Invest Ophthalmol Vis Sci 45:3914–3918. https://doi.org/10.1167/iovs.04-0492
doi: 10.1167/iovs.04-0492
pubmed: 15505036
Read SA, Vincent SJ, Collins MJ (2014) The visual and functional impacts of astigmatism and its clinical management. Ophthalmic Physiol Opt 34:267–294. https://doi.org/10.1111/opo.12128
doi: 10.1111/opo.12128
pubmed: 24635572