Vaccine-boosted CAR T crosstalk with host immunity to reject tumors with antigen heterogeneity.
CAR T
IFN-γ
antigen loss
antigen spreading
antigenic heterogeneity
cancer
chimeric antigen receptor T cell
immunotherapy
solid tumor
tumor heterogeneity
vaccine
Journal
Cell
ISSN: 1097-4172
Titre abrégé: Cell
Pays: United States
ID NLM: 0413066
Informations de publication
Date de publication:
20 07 2023
20 07 2023
Historique:
received:
09
10
2022
revised:
30
03
2023
accepted:
02
06
2023
medline:
31
7
2023
pubmed:
7
7
2023
entrez:
6
7
2023
Statut:
ppublish
Résumé
Chimeric antigen receptor (CAR) T cell therapy effectively treats human cancer, but the loss of the antigen recognized by the CAR poses a major obstacle. We found that in vivo vaccine boosting of CAR T cells triggers the engagement of the endogenous immune system to circumvent antigen-negative tumor escape. Vaccine-boosted CAR T promoted dendritic cell (DC) recruitment to tumors, increased tumor antigen uptake by DCs, and elicited the priming of endogenous anti-tumor T cells. This process was accompanied by shifts in CAR T metabolism toward oxidative phosphorylation (OXPHOS) and was critically dependent on CAR-T-derived IFN-γ. Antigen spreading (AS) induced by vaccine-boosted CAR T enabled a proportion of complete responses even when the initial tumor was 50% CAR antigen negative, and heterogeneous tumor control was further enhanced by the genetic amplification of CAR T IFN-γ expression. Thus, CAR-T-cell-derived IFN-γ plays a critical role in promoting AS, and vaccine boosting provides a clinically translatable strategy to drive such responses against solid tumors.
Identifiants
pubmed: 37413990
pii: S0092-8674(23)00642-6
doi: 10.1016/j.cell.2023.06.002
pmc: PMC10372881
mid: NIHMS1908849
pii:
doi:
Substances chimiques
Receptors, Chimeric Antigen
0
Cancer Vaccines
0
Receptors, Antigen, T-Cell
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
3148-3165.e20Subventions
Organisme : NCI NIH HHS
ID : P30 CA014051
Pays : United States
Organisme : NIAID NIH HHS
ID : DP2 AI164319
Pays : United States
Organisme : Howard Hughes Medical Institute
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA247632
Pays : United States
Organisme : NIBIB NIH HHS
ID : R01 EB022433
Pays : United States
Commentaires et corrections
Type : CommentIn
Informations de copyright
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of interests L.M. and D.J.I. are inventors on patents filed in relation to the amphiphile-vaccine technology. D.J.I. is a co-founder, shareholder, and consultant for Elicio Therapeutics, which has licensed patents related to the amphiphile-vaccine technology.
Références
J Immunol. 2016 Mar 15;196(6):2552-60
pubmed: 26873994
Cell. 2015 May 21;161(5):1202-1214
pubmed: 26000488
Genome Biol. 2010;11(10):R106
pubmed: 20979621
Immunol Rev. 2012 Sep;249(1):27-42
pubmed: 22889213
Mol Ther Methods Clin Dev. 2018 Dec 31;12:145-156
pubmed: 30666307
Cancer Discov. 2021 Sep;11(9):2248-2265
pubmed: 33837065
N Engl J Med. 2018 Feb 1;378(5):439-448
pubmed: 29385370
Cancer Cell. 2019 Dec 9;36(6):613-629.e7
pubmed: 31761658
Sci Immunol. 2021 Mar 26;6(57):
pubmed: 33771887
Lancet. 2020 Sep 19;396(10254):839-852
pubmed: 32888407
Sci Transl Med. 2020 Sep 2;12(559):
pubmed: 32878978
Cancer Discov. 2018 Oct;8(10):1219-1226
pubmed: 30135176
Cell Death Dis. 2017 Jun 1;8(6):e2836
pubmed: 28569770
Sci Transl Med. 2014 Sep 3;6(252):252ra121
pubmed: 25186176
Nature. 2012 Oct 18;490(7420):412-6
pubmed: 23051752
Nat Biotechnol. 2018 Apr;36(4):346-351
pubmed: 29505028
Mol Ther Oncolytics. 2017 Dec 19;8:41-51
pubmed: 29367945
Genome Biol. 2014;15(12):550
pubmed: 25516281
Mol Ther Oncolytics. 2020 Jul 15;18:360-371
pubmed: 32802940
Science. 2021 Oct 15;374(6565):eabe9977
pubmed: 34648346
Science. 2022 Nov 25;378(6622):853-858
pubmed: 36423279
Immunity. 2020 Oct 13;53(4):878-894.e7
pubmed: 33053333
Bioinformatics. 2019 Jun 1;35(12):2084-2092
pubmed: 30395178
PLoS One. 2021 Apr 15;16(4):e0248903
pubmed: 33857179
Nat Commun. 2019 Oct 17;10(1):4706
pubmed: 31624246
Mol Ther. 2011 Apr;19(4):751-9
pubmed: 21285960
iScience. 2020 Aug 13;23(9):101454
pubmed: 32858341
Science. 2019 Jul 12;365(6449):162-168
pubmed: 31296767
Am J Clin Nutr. 2011 Apr;93(4):884S-90
pubmed: 21289221
Nat Commun. 2020 Dec 2;11(1):6171
pubmed: 33268774
Nature. 2022 Apr;604(7906):563-570
pubmed: 35418687
Cell Rep. 2017 Dec 12;21(11):3205-3219
pubmed: 29241547
Nat Methods. 2012 Jun 28;9(7):676-82
pubmed: 22743772
J Natl Cancer Inst. 2017 Apr 1;109(4):
pubmed: 28376158
Nature. 2014 Mar 27;507(7493):519-22
pubmed: 24531764
Immunity. 2019 Jul 16;51(1):169-184.e5
pubmed: 31231035
Clin Cancer Res. 2020 Sep 1;26(17):4442-4447
pubmed: 32357962
Front Immunol. 2019 Feb 27;10:333
pubmed: 30873179
Bioinformatics. 2014 Jul 1;30(13):1930-2
pubmed: 24618469
Cell. 2017 Feb 9;168(4):724-740
pubmed: 28187291
Cancer Res. 2010 Sep 1;70(17):6725-34
pubmed: 20647327
Nat Immunol. 2020 Sep;21(9):1022-1033
pubmed: 32661364
Sci Transl Med. 2014 Sep 17;6(254):254ra128
pubmed: 25232180
F1000Res. 2015 Dec 30;4:1521
pubmed: 26925227
Nat Immunol. 2020 Aug;21(8):914-926
pubmed: 32424363
Nat Genet. 2003 Jul;34(3):267-73
pubmed: 12808457
Front Immunol. 2019 Feb 15;10:184
pubmed: 30828328
Nat Rev Clin Oncol. 2019 Jun;16(6):372-385
pubmed: 30837712
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
pubmed: 16199517
J Leukoc Biol. 2004 Feb;75(2):163-89
pubmed: 14525967
J Immunol. 2008 Aug 1;181(3):2056-64
pubmed: 18641343
Future Med Chem. 2020 Aug;12(15):1359-1362
pubmed: 32597219
Nature. 1992 Jun 25;357(6380):695-7
pubmed: 1377362
Trends Cancer. 2018 Nov;4(11):784-792
pubmed: 30352680
Bioinformatics. 2015 Oct 15;31(20):3356-8
pubmed: 26069265
PLoS One. 2013 Apr 09;8(4):e61338
pubmed: 23585892
Cell. 2013 Jun 6;153(6):1239-51
pubmed: 23746840
J Interferon Cytokine Res. 2014 May;34(5):318-29
pubmed: 24702117
Cell Mol Immunol. 2022 Jan;19(1):3-13
pubmed: 34480145
Sci Transl Med. 2017 Jul 19;9(399):
pubmed: 28724573
Clin Cancer Res. 2015 May 15;21(10):2278-88
pubmed: 25695689
Nat Commun. 2020 Jul 15;11(1):3549
pubmed: 32669548
Genome Biol. 2018 Dec 19;19(1):224
pubmed: 30567574
Genome Res. 2017 Mar;27(3):491-499
pubmed: 28100584
Nat Rev Drug Discov. 2021 Jul;20(7):531-550
pubmed: 33972771
Nat Methods. 2017 Apr;14(4):417-419
pubmed: 28263959
Front Immunol. 2018 May 04;9:847
pubmed: 29780381
Nat Rev Clin Oncol. 2020 Mar;17(3):147-167
pubmed: 31848460
Cancer Cell. 2022 Sep 12;40(9):1010-1026.e11
pubmed: 36027916
Immunity. 2016 Aug 16;45(2):374-88
pubmed: 27496732
J Clin Invest. 2021 Jan 19;131(2):
pubmed: 33463538
Nat Immunol. 2019 Dec;20(12):1692-1699
pubmed: 31745340
Cell. 2017 Jun 1;169(6):1130-1141.e11
pubmed: 28552348
J Clin Invest. 2019 Dec 2;129(12):5400-5410
pubmed: 31682239
Cancer Immunol Res. 2014 Feb;2(2):112-20
pubmed: 24579088
Nat Cell Biol. 2014 Oct;16(10):992-1003, 1-15
pubmed: 25241037
J Pharmacol Pharmacother. 2013 Oct;4(4):303-6
pubmed: 24250214
Nature. 2023 Feb;614(7949):635-648
pubmed: 36813894
Nat Med. 2016 Dec;22(12):1402-1410
pubmed: 27775706
Cell. 2018 Feb 22;172(5):1022-1037.e14
pubmed: 29429633
Immunity. 2018 Dec 18;49(6):1148-1161.e7
pubmed: 30552023
N Engl J Med. 2020 Apr 2;382(14):1331-1342
pubmed: 32242358
J Immunol. 2014 Nov 1;193(9):4477-84
pubmed: 25261477
Front Immunol. 2022 Jun 23;13:886683
pubmed: 35812387