Deep quantum neural networks on a superconducting processor.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
06 Jul 2023
Historique:
received: 06 12 2022
accepted: 29 06 2023
medline: 10 7 2023
pubmed: 7 7 2023
entrez: 6 7 2023
Statut: epublish

Résumé

Deep learning and quantum computing have achieved dramatic progresses in recent years. The interplay between these two fast-growing fields gives rise to a new research frontier of quantum machine learning. In this work, we report an experimental demonstration of training deep quantum neural networks via the backpropagation algorithm with a six-qubit programmable superconducting processor. We experimentally perform the forward process of the backpropagation algorithm and classically simulate the backward process. In particular, we show that three-layer deep quantum neural networks can be trained efficiently to learn two-qubit quantum channels with a mean fidelity up to 96.0% and the ground state energy of molecular hydrogen with an accuracy up to 93.3% compared to the theoretical value. In addition, six-layer deep quantum neural networks can be trained in a similar fashion to achieve a mean fidelity up to 94.8% for learning single-qubit quantum channels. Our experimental results indicate that the number of coherent qubits required to maintain does not scale with the depth of the deep quantum neural network, thus providing a valuable guide for quantum machine learning applications with both near-term and future quantum devices.

Identifiants

pubmed: 37414812
doi: 10.1038/s41467-023-39785-8
pii: 10.1038/s41467-023-39785-8
pmc: PMC10325994
doi:

Substances chimiques

Hydrogen 7YNJ3PO35Z

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

4006

Informations de copyright

© 2023. The Author(s).

Références

Nature. 2015 May 28;521(7553):436-44
pubmed: 26017442
Phys Rev Lett. 2021 May 14;126(19):190505
pubmed: 34047595
Phys Rev Lett. 2020 Dec 11;125(24):240502
pubmed: 33412023
Phys Rev Lett. 2021 Sep 24;127(13):130501
pubmed: 34623861
Phys Rev Lett. 2021 Jun 4;126(22):220502
pubmed: 34152182
Nat Commun. 2022 Jul 16;13(1):4144
pubmed: 35842418
Phys Rev Lett. 2015 Apr 10;114(14):140504
pubmed: 25910101
Nature. 2017 Sep 13;549(7671):195-202
pubmed: 28905917
Nat Commun. 2020 Jul 23;11(1):3683
pubmed: 32703942
Nature. 2013 Oct 10;502(7470):211-4
pubmed: 24108052
Phys Rev Lett. 2020 Nov 13;125(20):200503
pubmed: 33258656
Nat Commun. 2020 Feb 10;11(1):808
pubmed: 32041956
Sci Adv. 2018 Dec 07;4(12):eaat9004
pubmed: 30539141
Science. 2019 Aug 9;365(6453):574-577
pubmed: 31395779
Sci Adv. 2019 Oct 18;5(10):eaaw9918
pubmed: 31667342
Nature. 2017 Oct 18;550(7676):354-359
pubmed: 29052630
Phys Rev Lett. 2020 Apr 3;124(13):130502
pubmed: 32302195
Nature. 2021 Aug;596(7873):583-589
pubmed: 34265844
Science. 2022 Jun 10;376(6598):1182-1186
pubmed: 35679419
Phys Rev Lett. 2019 Aug 23;123(8):080501
pubmed: 31491216
Nat Commun. 2021 Mar 19;12(1):1779
pubmed: 33741989
Phys Rev Lett. 2013 Aug 23;111(8):080502
pubmed: 24010421
Nat Commun. 2023 Jul 6;14(1):4006
pubmed: 37414812
Nature. 2019 Mar;567(7747):209-212
pubmed: 30867609
Phys Rev Lett. 2020 Nov 13;125(20):200504
pubmed: 33258640
Nature. 2007 Sep 27;449(7161):443-7
pubmed: 17898763
Sci Adv. 2019 Jan 25;5(1):eaav2761
pubmed: 30746476
Rep Prog Phys. 2018 Jul;81(7):074001
pubmed: 29504942
Sci Bull (Beijing). 2023 May 15;68(9):906-912
pubmed: 37085397

Auteurs

Xiaoxuan Pan (X)

Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, 100084, China.

Zhide Lu (Z)

Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, 100084, China.

Weiting Wang (W)

Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, 100084, China.

Ziyue Hua (Z)

Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, 100084, China.

Yifang Xu (Y)

Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, 100084, China.

Weikang Li (W)

Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, 100084, China.

Weizhou Cai (W)

Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, 100084, China.

Xuegang Li (X)

Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, 100084, China.

Haiyan Wang (H)

Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, 100084, China.

Yi-Pu Song (YP)

Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, 100084, China.

Chang-Ling Zou (CL)

CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui, 230026, China.
Hefei National Laboratory, Hefei, 230088, China.

Dong-Ling Deng (DL)

Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, 100084, China. dldeng@tsinghua.edu.cn.
Hefei National Laboratory, Hefei, 230088, China. dldeng@tsinghua.edu.cn.
Shanghai Qi Zhi Institute, No. 701 Yunjin Road, Xuhui District, Shanghai, 200232, China. dldeng@tsinghua.edu.cn.

Luyan Sun (L)

Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, 100084, China. luyansun@tsinghua.edu.cn.
Hefei National Laboratory, Hefei, 230088, China. luyansun@tsinghua.edu.cn.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
1.00
Humans Magnetic Resonance Imaging Brain Infant, Newborn Infant, Premature
Humans Algorithms Software Artificial Intelligence Computer Simulation

Unsupervised learning for real-time and continuous gait phase detection.

Dollaporn Anopas, Yodchanan Wongsawat, Jetsada Arnin
1.00
Humans Gait Neural Networks, Computer Unsupervised Machine Learning Walking

Classifications MeSH