Deep quantum neural networks on a superconducting processor.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
06 Jul 2023
06 Jul 2023
Historique:
received:
06
12
2022
accepted:
29
06
2023
medline:
10
7
2023
pubmed:
7
7
2023
entrez:
6
7
2023
Statut:
epublish
Résumé
Deep learning and quantum computing have achieved dramatic progresses in recent years. The interplay between these two fast-growing fields gives rise to a new research frontier of quantum machine learning. In this work, we report an experimental demonstration of training deep quantum neural networks via the backpropagation algorithm with a six-qubit programmable superconducting processor. We experimentally perform the forward process of the backpropagation algorithm and classically simulate the backward process. In particular, we show that three-layer deep quantum neural networks can be trained efficiently to learn two-qubit quantum channels with a mean fidelity up to 96.0% and the ground state energy of molecular hydrogen with an accuracy up to 93.3% compared to the theoretical value. In addition, six-layer deep quantum neural networks can be trained in a similar fashion to achieve a mean fidelity up to 94.8% for learning single-qubit quantum channels. Our experimental results indicate that the number of coherent qubits required to maintain does not scale with the depth of the deep quantum neural network, thus providing a valuable guide for quantum machine learning applications with both near-term and future quantum devices.
Identifiants
pubmed: 37414812
doi: 10.1038/s41467-023-39785-8
pii: 10.1038/s41467-023-39785-8
pmc: PMC10325994
doi:
Substances chimiques
Hydrogen
7YNJ3PO35Z
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4006Informations de copyright
© 2023. The Author(s).
Références
Nature. 2015 May 28;521(7553):436-44
pubmed: 26017442
Phys Rev Lett. 2021 May 14;126(19):190505
pubmed: 34047595
Phys Rev Lett. 2020 Dec 11;125(24):240502
pubmed: 33412023
Phys Rev Lett. 2021 Sep 24;127(13):130501
pubmed: 34623861
Phys Rev Lett. 2021 Jun 4;126(22):220502
pubmed: 34152182
Nat Commun. 2022 Jul 16;13(1):4144
pubmed: 35842418
Phys Rev Lett. 2015 Apr 10;114(14):140504
pubmed: 25910101
Nature. 2017 Sep 13;549(7671):195-202
pubmed: 28905917
Nat Commun. 2020 Jul 23;11(1):3683
pubmed: 32703942
Nature. 2013 Oct 10;502(7470):211-4
pubmed: 24108052
Phys Rev Lett. 2020 Nov 13;125(20):200503
pubmed: 33258656
Nat Commun. 2020 Feb 10;11(1):808
pubmed: 32041956
Sci Adv. 2018 Dec 07;4(12):eaat9004
pubmed: 30539141
Science. 2019 Aug 9;365(6453):574-577
pubmed: 31395779
Sci Adv. 2019 Oct 18;5(10):eaaw9918
pubmed: 31667342
Nature. 2017 Oct 18;550(7676):354-359
pubmed: 29052630
Phys Rev Lett. 2020 Apr 3;124(13):130502
pubmed: 32302195
Nature. 2021 Aug;596(7873):583-589
pubmed: 34265844
Science. 2022 Jun 10;376(6598):1182-1186
pubmed: 35679419
Phys Rev Lett. 2019 Aug 23;123(8):080501
pubmed: 31491216
Nat Commun. 2021 Mar 19;12(1):1779
pubmed: 33741989
Phys Rev Lett. 2013 Aug 23;111(8):080502
pubmed: 24010421
Nat Commun. 2023 Jul 6;14(1):4006
pubmed: 37414812
Nature. 2019 Mar;567(7747):209-212
pubmed: 30867609
Phys Rev Lett. 2020 Nov 13;125(20):200504
pubmed: 33258640
Nature. 2007 Sep 27;449(7161):443-7
pubmed: 17898763
Sci Adv. 2019 Jan 25;5(1):eaav2761
pubmed: 30746476
Rep Prog Phys. 2018 Jul;81(7):074001
pubmed: 29504942
Sci Bull (Beijing). 2023 May 15;68(9):906-912
pubmed: 37085397