Fecal microbiota transplantation plus anti-PD-1 immunotherapy in advanced melanoma: a phase I trial.


Journal

Nature medicine
ISSN: 1546-170X
Titre abrégé: Nat Med
Pays: United States
ID NLM: 9502015

Informations de publication

Date de publication:
08 2023
Historique:
received: 09 02 2023
accepted: 08 06 2023
medline: 17 8 2023
pubmed: 7 7 2023
entrez: 6 7 2023
Statut: ppublish

Résumé

Fecal microbiota transplantation (FMT) represents a potential strategy to overcome resistance to immune checkpoint inhibitors in patients with refractory melanoma; however, the role of FMT in first-line treatment settings has not been evaluated. We conducted a multicenter phase I trial combining healthy donor FMT with the PD-1 inhibitors nivolumab or pembrolizumab in 20 previously untreated patients with advanced melanoma. The primary end point was safety. No grade 3 adverse events were reported from FMT alone. Five patients (25%) experienced grade 3 immune-related adverse events from combination therapy. Key secondary end points were objective response rate, changes in gut microbiome composition and systemic immune and metabolomics analyses. The objective response rate was 65% (13 of 20), including four (20%) complete responses. Longitudinal microbiome profiling revealed that all patients engrafted strains from their respective donors; however, the acquired similarity between donor and patient microbiomes only increased over time in responders. Responders experienced an enrichment of immunogenic and a loss of deleterious bacteria following FMT. Avatar mouse models confirmed the role of healthy donor feces in increasing anti-PD-1 efficacy. Our results show that FMT from healthy donors is safe in the first-line setting and warrants further investigation in combination with immune checkpoint inhibitors. ClinicalTrials.gov identifier NCT03772899 .

Identifiants

pubmed: 37414899
doi: 10.1038/s41591-023-02453-x
pii: 10.1038/s41591-023-02453-x
doi:

Substances chimiques

Immune Checkpoint Inhibitors 0

Banques de données

ClinicalTrials.gov
['NCT03772899']

Types de publication

Clinical Trial, Phase I Multicenter Study Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2121-2132

Subventions

Organisme : CIHR
ID : PJT-178341
Pays : Canada
Organisme : CIHR
ID : PJT – 156295
Pays : Canada
Organisme : CIHR
ID : MOP 389137
Pays : Canada

Commentaires et corrections

Type : CommentIn
Type : CommentIn
Type : ErratumIn

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Robert, C. et al. Five-year outcomes with nivolumab in patients with wild-type BRAF advanced melanoma. JCO 38, 3937–3946 (2020).
doi: 10.1200/JCO.20.00995
Larkin, J. et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 381, 1535–1546 (2019).
pubmed: 31562797 doi: 10.1056/NEJMoa1910836
Robert, C. et al. Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): post-hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study. Lancet Oncol. 20, 1239–1251 (2019).
pubmed: 31345627 doi: 10.1016/S1470-2045(19)30388-2
Esfahani, K. et al. Moving towards personalized treatments of immune-related adverse events. Nat. Rev. Clin. Oncol. 17, 504–515 (2020).
pubmed: 32246128 doi: 10.1038/s41571-020-0352-8
Derosa, L. et al. Microbiota-centered interventions: the next breakthrough in immuno-oncology? Cancer Discov. 11, 2396–2412 (2021).
pubmed: 34400407 doi: 10.1158/2159-8290.CD-21-0236
Sepich-Poore, G. D. et al. The microbiome and human cancer. Science 371, eabc4552 (2021).
pubmed: 33766858 pmcid: 8767999 doi: 10.1126/science.abc4552
Routy, B. et al. The gut microbiota influences anticancer immunosurveillance and general health. Nat. Rev. Clin. Oncol. 15, 382–396 (2018).
pubmed: 29636538 doi: 10.1038/s41571-018-0006-2
Aghamajidi, A. & Maleki Vareki, S. The effect of the gut microbiota on systemic and anti-tumor immunity and response to systemic therapy against cancer. Cancers 14, 3563 (2022).
pubmed: 35892821 pmcid: 9330582 doi: 10.3390/cancers14153563
Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).
pubmed: 29097494 doi: 10.1126/science.aan3706
Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).
pubmed: 29097493 doi: 10.1126/science.aan4236
Andrews, L. P., Yano, H. & Vignali, D. A. A. Inhibitory receptors and ligands beyond PD-1, PD-L1 and CTLA-4: breakthroughs or backups. Nat. Immunol. 20, 1425–1434 (2019).
pubmed: 31611702 doi: 10.1038/s41590-019-0512-0
Lee, K. A. et al. Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma. Nat. Med. 28, 535–544 (2022).
pubmed: 35228751 pmcid: 8938272 doi: 10.1038/s41591-022-01695-5
Matson, V. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359, 104–108 (2018).
pubmed: 29302014 pmcid: 6707353 doi: 10.1126/science.aao3290
McCulloch, J. A. et al. Intestinal microbiota signatures of clinical response and immune-related adverse events in melanoma patients treated with anti-PD-1. Nat. Med. 28, 545–556 (2022).
pubmed: 35228752 pmcid: 10246505 doi: 10.1038/s41591-022-01698-2
Simpson, R. C. et al. Diet-driven microbial ecology underpins associations between cancer immunotherapy outcomes and the gut microbiome. Nat. Med. 38, 2344–2352 (2022).
doi: 10.1038/s41591-022-01965-2
Derosa, L. et al. Gut bacteria composition drives primary resistance to cancer immunotherapy in renal cell carcinoma patients. Eur. Urol. 78, 195–206 (2020).
pubmed: 32376136 doi: 10.1016/j.eururo.2020.04.044
Derosa, L. et al. Intestinal Akkermansia muciniphila predicts clinical response to PD-1 blockade in patients with advanced non-small-cell lung cancer. Nat. Med. 28, 315–324 (2022).
pubmed: 35115705 pmcid: 9330544 doi: 10.1038/s41591-021-01655-5
Messaoudene, M. et al. A natural polyphenol exerts antitumor activity and circumvents anti-PD-1 resistance through effects on the gut microbiota. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-21-0808 (2022).
Baruch, E. N. et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 371, 602–609 (2021).
pubmed: 33303685 doi: 10.1126/science.abb5920
Davar, D. et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 371, 595–602 (2021).
pubmed: 33542131 pmcid: 8097968 doi: 10.1126/science.abf3363
Craven, L. J., Nair Parvathy, S., Tat-Ko, J., Burton, J. P. & Silverman, M. S. Extended screening costs associated with selecting donors for fecal microbiota transplantation for treatment of metabolic syndrome-associated diseases. Open Forum Infect. Dis. 4, ofx243 (2017).
pubmed: 29255739 pmcid: 5730934 doi: 10.1093/ofid/ofx243
Parvathy, S. N. et al. Enhanced donor screening for faecal microbial transplantation during COVID-19. Gut 70, 2219–2220 (2021).
pubmed: 33789964 doi: 10.1136/gutjnl-2021-324593
Ianiro, G. et al. Variability of strain engraftment and predictability of microbiome composition after fecal microbiota transplantation across different diseases. Nat. Med. 28, 1913–1923 (2022).
pubmed: 36109637 pmcid: 9499858 doi: 10.1038/s41591-022-01964-3
Blanco-Míguez, A. et al. Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01688-w (2023).
Moldoveanu, D. et al. Spatially mapping the immune landscape of melanoma using imaging mass cytometry. Sci. Immunol. 7, eabi5072 (2022).
pubmed: 35363543 doi: 10.1126/sciimmunol.abi5072
Kamphorst, A. O. et al. Proliferation of PD-1
pubmed: 28446615 pmcid: 5441721 doi: 10.1073/pnas.1705327114
Kunert, A. et al. CD45RA
pubmed: 31176366 pmcid: 6555948 doi: 10.1186/s40425-019-0608-y
Ninkov, M. et al. Improved MAIT cell functions following fecal microbiota transplantation for metastatic renal cell carcinoma. Cancer Immunol. Immunother. https://doi.org/10.1007/s00262-022-03329-8 (2022).
doi: 10.1007/s00262-022-03329-8 pubmed: 36396738 pmcid: 9672546
Yonekura, S. et al. Cancer induces a stress ileopathy depending on β-adrenergic receptors and promoting dysbiosis that contributes to carcinogenesis. Cancer Discov. 12, 1128–1151 (2022).
pubmed: 34930787 doi: 10.1158/2159-8290.CD-21-0999
Kao, D. et al. Effect of oral capsule- vs colonoscopy-delivered fecal microbiota transplantation on recurrent clostridium difficile infection: a randomized clinical trial. JAMA 318, 1985–1993 (2017).
pubmed: 29183074 pmcid: 5820695 doi: 10.1001/jama.2017.17077
Saha, S., Mara, K., Pardi, D. S. & Khanna, S. Long-term safety of fecal microbiota transplantation for recurrent clostridioides difficile infection. Gastroenterology 160, 1961–1969 (2021).
pubmed: 33444573 doi: 10.1053/j.gastro.2021.01.010
Robert, C. et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 372, 320–330 (2015).
pubmed: 25399552 doi: 10.1056/NEJMoa1412082
Ribas, A. et al. Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. JAMA 315, 1600–1609 (2016).
pubmed: 27092830 doi: 10.1001/jama.2016.4059
Wolchok, J. D. et al. Long-term outcomes with nivolumab plus ipilimumab or nivolumab alone versus ipilimumab in patients with advanced melanoma. JCO 40, 127–137 (2022).
doi: 10.1200/JCO.21.02229
Kuzmanovszki, D. et al. Anti-PD-1 monotherapy in advanced melanoma-real-world data from a 77-month-long retrospective observational study. Biomedicines 10, 1737 (2022).
pubmed: 35885042 pmcid: 9313334 doi: 10.3390/biomedicines10071737
Ibrahim, T., Mateus, C., Baz, M. & Robert, C. Older melanoma patients aged 75 and above retain responsiveness to anti-PD1 therapy: results of a retrospective single-institution cohort study. Cancer Immunol. Immunother. 67, 1571–1578 (2018).
pubmed: 30056599 doi: 10.1007/s00262-018-2219-8
Oliva, I. G. et al. 607 MCGRAW trial: evaluation of the safety and efficacy of an oral microbiome intervention (SER-401) in combination with nivolumab in first line metastatic melanoma patients. In Regular and Young Investigator Award Abstracts A637–A637 (BMJ Publishing Group, 2022).
Spencer, C. N. et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science 374, 1632–1640 (2021).
pubmed: 34941392 pmcid: 8970537 doi: 10.1126/science.aaz7015
Al-Habsi, M. et al. Spermidine activates mitochondrial trifunctional protein and improves antitumor immunity in mice. Science 378, eabj3510 (2022).
pubmed: 36302005 doi: 10.1126/science.abj3510
Vorwald, V. M. et al. Circulating CD8
doi: 10.1002/cti2.1367
Fan, X., Quezada, S. A., Sepulveda, M. A., Sharma, P. & Allison, J. P. Engagement of the ICOS pathway markedly enhances efficacy of CTLA-4 blockade in cancer immunotherapy. J. Exp. Med. 211, 715–725 (2014).
pubmed: 24687957 pmcid: 3978270 doi: 10.1084/jem.20130590
Xiao, Z., Mayer, A. T., Nobashi, T. W. & Gambhir, S. S. ICOS is an indicator of T-cell-mediated response to cancer immunotherapy. Cancer Res. 80, 3023–3032 (2020).
pubmed: 32156777 doi: 10.1158/0008-5472.CAN-19-3265
Filipazzi, P., Huber, V. & Rivoltini, L. Phenotype, function and clinical implications of myeloid-derived suppressor cells in cancer patients. Cancer Immunol. Immunother. 61, 255–263 (2012).
pubmed: 22120756 doi: 10.1007/s00262-011-1161-9
Azuma, K. et al. Clinical significance of plasma-free amino acids and tryptophan metabolites in patients with non-small cell lung cancer receiving PD-1 inhibitor: a pilot cohort study for developing a prognostic multivariate model. J. Immunother. Cancer 10, e004420 (2022).
pubmed: 35569917 pmcid: 9109096 doi: 10.1136/jitc-2021-004420
Mullish, B. H. et al. Microbial bile salt hydrolases mediate the efficacy of faecal microbiota transplant in the treatment of recurrent Clostridioides difficile infection. Gut 68, 1791–1800 (2019).
pubmed: 30816855 doi: 10.1136/gutjnl-2018-317842
Walter, J., Armet, A. M., Finlay, B. B. & Shanahan, F. Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell 180, 221–232 (2020).
pubmed: 31978342 doi: 10.1016/j.cell.2019.12.025
Freites-Martinez, A., Santana, N., Arias-Santiago, S. & Viera, A. CTCAE versión 5.0. Evaluación de la gravedad de los eventos adversos dermatológicos de las terapias antineoplásicas. Actas Dermosifiliogr. 112, 90–92 (2021).
pubmed: 32891586 doi: 10.1016/j.ad.2019.05.009
Al, K. F., Bisanz, J. E., Gloor, G. B., Reid, G. & Burton, J. P. Evaluation of sampling and storage procedures on preserving the community structure of stool microbiota: a simple at-home toilet-paper collection method. J. Microbiol. Methods 144, 117–121 (2018).
pubmed: 29155236 doi: 10.1016/j.mimet.2017.11.014
Al, K. F. et al. Fecal microbiota transplantation is safe and tolerable in patients with multiple sclerosis: a pilot randomized controlled trial. Mult. Scler. J. Exp. Transl. Clin. https://doi.org/10.1177/20552173221086662 (2022).
Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).
pubmed: 27207943 doi: 10.1093/bioinformatics/btw313
Ndiaye, M. & Mattei, X. Endosymbiotic relationship between a rickettsia-like microorganism and the male germ-cells of Culex tigripes. J. Submicrosc. Cytol. Pathol. 25, 71–77 (1993).
pubmed: 8096432
Egermark-Eriksson, I., Carlsson, G. E. & Ingervall, B. Prevalence of mandibular dysfunction and orofacial parafunction in 7-, 11- and 15-year-old Swedish children. Eur. J. Orthod. 3, 163–172 (1981).
pubmed: 6943030 doi: 10.1093/ejo/3.3.163
Damond, N. et al. A Map of Human Type 1 diabetes progression by imaging mass cytometry. Cell Metab. 29, 755–768 (2019).
pubmed: 30713109 pmcid: 6821395 doi: 10.1016/j.cmet.2018.11.014
Levine, J. H. et al. Data-driven phenotypic dissection of aml reveals progenitor-like cells that correlate with prognosis. Cell 162, 184–197 (2015).
pubmed: 26095251 pmcid: 4508757 doi: 10.1016/j.cell.2015.05.047
Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).
pubmed: 31570887 doi: 10.1038/s41592-019-0582-9
Kjer-Nielsen, L. et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491, 717–723 (2012).
pubmed: 23051753 doi: 10.1038/nature11605
Corbett, A. J. et al. T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature 509, 361–365 (2014).
pubmed: 24695216 doi: 10.1038/nature13160
Dona, A. C. et al. Precision high-throughput proton NMR spectroscopy of human urine, serum, and plasma for large-scale metabolic phenotyping. Anal. Chem. 86, 9887–9894 (2014).
pubmed: 25180432 doi: 10.1021/ac5025039
Sands, C. J. et al. The nPYc-Toolbox, a Python module for the pre-processing, quality-control and analysis of metabolic profiling datasets. Bioinformatics 35, 5359–5360 (2019).
pubmed: 31350543 pmcid: 6954639 doi: 10.1093/bioinformatics/btz566
Takis, P. G. et al. A computationally lightweight algorithm for deriving reliable metabolite panel measurements from 1D 1H NMR. Anal. Chem. 93, 4995–5000 (2021).
pubmed: 33733737 pmcid: 8041249 doi: 10.1021/acs.analchem.1c00113
Akoka, S., Barantin, L. & Trierweiler, M. Concentration measurement by proton NMR using the ERETIC method. Anal. Chem. 71, 2554–2557 (1999).
pubmed: 21662801 doi: 10.1021/ac981422i
Sarafian, M. H. et al. Bile acid profiling and quantification in biofluids using ultra-performance liquid chromatography tandem mass spectrometry. Anal. Chem. 87, 9662–9670 (2015).
pubmed: 26327313 doi: 10.1021/acs.analchem.5b01556
Chambers, M. C. et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918–920 (2012).
pubmed: 23051804 pmcid: 3471674 doi: 10.1038/nbt.2377
Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006).
pubmed: 16448051 doi: 10.1021/ac051437y
Wolfer, A. M. et al. peakPantheR, an R package for large-scale targeted extraction and integration of annotated metabolic features in LC–MS profiling datasets. Bioinformatics 37, 4886–4888 (2021).
pubmed: 34125879 pmcid: 8665750 doi: 10.1093/bioinformatics/btab433
Tautenhahn, R., Böttcher, C. & Neumann, S. Highly sensitive feature detection for high resolution LC/MS. BMC Bioinform. 9, 504 (2008).
doi: 10.1186/1471-2105-9-504
Whiley, L. et al. Ultrahigh-performance liquid chromatography tandem mass spectrometry with electrospray ionization quantification of tryptophan metabolites and markers of gut health in serum and plasma—application to clinical and epidemiology cohorts. Anal. Chem. 91, 5207–5216 (2019).
pubmed: 30848589 pmcid: 6503468 doi: 10.1021/acs.analchem.8b05884
Barr, D. J., Levy, R., Scheepers, C. & Tily, H. J. Random effects structure for confirmatory hypothesis testing: keep it maximal. J. Mem. Lang. 68, 255–278 (2013).
doi: 10.1016/j.jml.2012.11.001
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
pubmed: 27214047 pmcid: 4927377 doi: 10.1038/nmeth.3869
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).
pubmed: 23193283 pmcid: 3531112 doi: 10.1093/nar/gks1219
McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
pubmed: 23630581 pmcid: 3632530 doi: 10.1371/journal.pone.0061217

Auteurs

Bertrand Routy (B)

Research Center of the Centre Hospitalier de l'Université de Montréal, Montréal (CRCHUM), Montreal, Quebec, Canada.
Hematology-Oncology Division, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada.

John G Lenehan (JG)

Department of Oncology, Western University, London, Ontario, Canada.
Lawson Health Research Institute, London, Ontario, Canada.

Wilson H Miller (WH)

Lady Davis Institute of the Jewish General Hospital, Segal Cancer Centre, Montreal, Quebec, Canada.
Departments of Oncology and Medicine, McGill University, Montreal, Quebec, Canada.

Rahima Jamal (R)

Research Center of the Centre Hospitalier de l'Université de Montréal, Montréal (CRCHUM), Montreal, Quebec, Canada.
Hematology-Oncology Division, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada.

Meriem Messaoudene (M)

Research Center of the Centre Hospitalier de l'Université de Montréal, Montréal (CRCHUM), Montreal, Quebec, Canada.

Brendan A Daisley (BA)

Department of Microbiology & Immunology, Western University, London, Ontario, Canada.
Canadian Centre for Human Microbiome and Probiotics Research, London, Ontario, Canada.

Cecilia Hes (C)

Research Center of the Centre Hospitalier de l'Université de Montréal, Montréal (CRCHUM), Montreal, Quebec, Canada.
Peter Brojde Lung Cancer Center, Jewish General Hospital, Montreal, Quebec, Canada.

Kait F Al (KF)

Lawson Health Research Institute, London, Ontario, Canada.
Department of Microbiology & Immunology, Western University, London, Ontario, Canada.
Canadian Centre for Human Microbiome and Probiotics Research, London, Ontario, Canada.

Laura Martinez-Gili (L)

Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London, UK.
Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK.

Michal Punčochář (M)

Department of Computational, Cellular and Integrative Biology, University of Trento, Trento, Italy.

Scott Ernst (S)

Department of Oncology, Western University, London, Ontario, Canada.

Diane Logan (D)

Department of Oncology, Western University, London, Ontario, Canada.

Karl Belanger (K)

Research Center of the Centre Hospitalier de l'Université de Montréal, Montréal (CRCHUM), Montreal, Quebec, Canada.
Hematology-Oncology Division, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada.

Khashayar Esfahani (K)

Lady Davis Institute of the Jewish General Hospital, Segal Cancer Centre, Montreal, Quebec, Canada.
Departments of Oncology and Medicine, McGill University, Montreal, Quebec, Canada.

Corentin Richard (C)

Research Center of the Centre Hospitalier de l'Université de Montréal, Montréal (CRCHUM), Montreal, Quebec, Canada.

Marina Ninkov (M)

Department of Microbiology & Immunology, Western University, London, Ontario, Canada.

Gianmarco Piccinno (G)

Department of Computational, Cellular and Integrative Biology, University of Trento, Trento, Italy.

Federica Armanini (F)

Department of Computational, Cellular and Integrative Biology, University of Trento, Trento, Italy.

Federica Pinto (F)

Department of Computational, Cellular and Integrative Biology, University of Trento, Trento, Italy.

Mithunah Krishnamoorthy (M)

Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.

Rene Figueredo (R)

Department of Oncology, Western University, London, Ontario, Canada.

Pamela Thebault (P)

Research Center of the Centre Hospitalier de l'Université de Montréal, Montréal (CRCHUM), Montreal, Quebec, Canada.

Panteleimon Takis (P)

Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, National Phenome Centre, Imperial College London, London, UK.
Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.

Jamie Magrill (J)

Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Quebec, Canada.

LeeAnn Ramsay (L)

Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Quebec, Canada.

Lisa Derosa (L)

Gustave Roussy Cancer Campus, Villejuif, France.
Cancer Medicine Department, Gustave Roussy, Villejuif, France.
Institut National de la Santé Et et de la Recherche Médicale (INSERM) U1015, ClinicObiome, Equipe Labellisée-28 Ligue Nationale contre le Cancer, Villejuif, France.
Université Paris-Saclay, Ile-de-France, France.

Julian R Marchesi (JR)

Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London, UK.

Seema Nair Parvathy (SN)

Department of Medicine, Division of Infectious Diseases, Western University, London, Ontario, Canada.
Division of Infectious Diseases, St Joseph's Health Care, London, Ontario, Canada.

Arielle Elkrief (A)

Research Center of the Centre Hospitalier de l'Université de Montréal, Montréal (CRCHUM), Montreal, Quebec, Canada.

Ian R Watson (IR)

Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Quebec, Canada.
Department of Biochemistry, McGill University, Montréal, Quebec, Canada.

Rejean Lapointe (R)

Research Center of the Centre Hospitalier de l'Université de Montréal, Montréal (CRCHUM), Montreal, Quebec, Canada.
Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Quebec, Canada.

Nicola Segata (N)

Department of Computational, Cellular and Integrative Biology, University of Trento, Trento, Italy.

S M Mansour Haeryfar (SMM)

Lawson Health Research Institute, London, Ontario, Canada.
Department of Microbiology & Immunology, Western University, London, Ontario, Canada.
Department of Medicine, Division of Clinical Immunology and Allergy, Western University, London, Ontario, Canada.
Department of Surgery, Division of General Surgery, Western University, London, Ontario, Canada.

Benjamin H Mullish (BH)

Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London, UK.
Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK.

Michael S Silverman (MS)

Lawson Health Research Institute, London, Ontario, Canada.
Department of Microbiology & Immunology, Western University, London, Ontario, Canada.
Department of Medicine, Division of Infectious Diseases, Western University, London, Ontario, Canada.
Division of Infectious Diseases, St Joseph's Health Care, London, Ontario, Canada.

Jeremy P Burton (JP)

Lawson Health Research Institute, London, Ontario, Canada.
Department of Microbiology & Immunology, Western University, London, Ontario, Canada.
Canadian Centre for Human Microbiome and Probiotics Research, London, Ontario, Canada.

Saman Maleki Vareki (S)

Department of Oncology, Western University, London, Ontario, Canada. saman.malekivareki@lhsc.on.ca.
Lawson Health Research Institute, London, Ontario, Canada. saman.malekivareki@lhsc.on.ca.
Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada. saman.malekivareki@lhsc.on.ca.
Department of Medical Biophysics, Western University, London, Ontario, Canada. saman.malekivareki@lhsc.on.ca.
Ontario Institute of Cancer Research, Toronto, Ontario, Canada. saman.malekivareki@lhsc.on.ca.

Articles similaires

1.00
Humans Yoga Low Back Pain Female Male
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Humans Immune Checkpoint Inhibitors Lung Neoplasms Prognosis Inflammation

Classifications MeSH