Plasticity of neuronal dynamics in the lateral habenula for cue-punishment associative learning.


Journal

Molecular psychiatry
ISSN: 1476-5578
Titre abrégé: Mol Psychiatry
Pays: England
ID NLM: 9607835

Informations de publication

Date de publication:
06 Jul 2023
Historique:
received: 12 01 2023
accepted: 19 06 2023
revised: 30 05 2023
medline: 7 7 2023
pubmed: 7 7 2023
entrez: 6 7 2023
Statut: aheadofprint

Résumé

The brain's ability to associate threats with external stimuli is vital to execute essential behaviours including avoidance. Disruption of this process contributes instead to the emergence of pathological traits which are common in addiction and depression. However, the mechanisms and neural dynamics at the single-cell resolution underlying the encoding of associative learning remain elusive. Here, employing a Pavlovian discrimination task in mice we investigate how neuronal populations in the lateral habenula (LHb), a subcortical nucleus whose excitation underlies negative affect, encode the association between conditioned stimuli and a punishment (unconditioned stimulus). Large population single-unit recordings in the LHb reveal both excitatory and inhibitory responses to aversive stimuli. Additionally, local optical inhibition prevents the formation of cue discrimination during associative learning, demonstrating a critical role of LHb activity in this process. Accordingly, longitudinal in vivo two-photon imaging tracking LHb calcium neuronal dynamics during conditioning reveals an upward or downward shift of individual neurons' CS-evoked responses. While recordings in acute slices indicate strengthening of synaptic excitation after conditioning, support vector machine algorithms suggest that postsynaptic dynamics to punishment-predictive cues represent behavioral cue discrimination. To examine the presynaptic signaling in LHb participating in learning we monitored neurotransmitter dynamics with genetically-encoded indicators in behaving mice. While glutamate, GABA, and serotonin release in LHb remain stable across associative learning, we observe enhanced acetylcholine signaling developing throughout conditioning. In summary, converging presynaptic and postsynaptic mechanisms in the LHb underlie the transformation of neutral cues in valued signals supporting cue discrimination during learning.

Identifiants

pubmed: 37414924
doi: 10.1038/s41380-023-02155-3
pii: 10.1038/s41380-023-02155-3
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
ID : 31003A_175549

Informations de copyright

© 2023. The Author(s).

Références

Cohen JY, Haesler S, Vong L, Lowell BB, Uchida N. Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature. 2012;482:85–8.
pubmed: 22258508 pmcid: 3271183 doi: 10.1038/nature10754
Herry C, Johansen JP. Encoding of fear learning and memory in distributed neuronal circuits. Nat Neurosci. 2014;17:1644–54.
pubmed: 25413091 doi: 10.1038/nn.3869
LeDoux JE. Emotion circuits in the brain. Annu Rev Neurosci. 2000;23:155–84.
pubmed: 10845062 doi: 10.1146/annurev.neuro.23.1.155
Stephenson-Jones M, Yu K, Ahrens S, Tucciarone JM, van Huijstee AN, Mejia LA, et al. A basal ganglia circuit for evaluating action outcomes. Nature. 2016;539:289–93.
pubmed: 27652894 pmcid: 5161609 doi: 10.1038/nature19845
Matsumoto M, Hikosaka O. Representation of negative motivational value in the primate lateral habenula. Nat Neurosci. 2009;12:77–84.
pubmed: 19043410 doi: 10.1038/nn.2233
Lazaridis I, Tzortzi O, Weglage M, Märtin A, Xuan Y, Parent M, et al. A hypothalamus-habenula circuit controls aversion. Mol Psychiatry. 2019;24:1351–68.
pubmed: 30755721 pmcid: 6756229 doi: 10.1038/s41380-019-0369-5
Trusel M, Nuno-Perez A, Lecca S, Harada H, Lalive AL, Congiu M, et al. Punishment-Predictive Cues Guide Avoidance through Potentiation of Hypothalamus-to-Habenula Synapses. Neuron. 2019;102:120–7.e4.
pubmed: 30765165 doi: 10.1016/j.neuron.2019.01.025
Lawson RP, Seymour B, Loh E, Lutti A, Dolan RJ, Dayan P, et al. The habenula encodes negative motivational value associated with primary punishment in humans. Proc Natl Acad Sci. 2014;111:11858–63.
pubmed: 25071182 pmcid: 4136587 doi: 10.1073/pnas.1323586111
Amo R, Fredes F, Kinoshita M, Aoki R, Aizawa H, Agetsuma M, et al. The habenulo-raphe serotonergic circuit encodes an aversive expectation value essential for adaptive active avoidance of danger. Neuron. 2014;84:1034–48.
pubmed: 25467985 doi: 10.1016/j.neuron.2014.10.035
Wang D, Li Y, Feng Q, Guo Q, Zhou J, Luo M. Learning shapes the aversion and reward responses of lateral habenula neurons. Elife. 2017;6:e23045.
pubmed: 28561735 pmcid: 5469615 doi: 10.7554/eLife.23045
Lecca S, Meye FJ, Mameli M. The lateral habenula in addiction and depression: an anatomical, synaptic and behavioral overview. Eur J Neurosci. 2014;39:1170–8.
pubmed: 24712996 doi: 10.1111/ejn.12480
Hu H, Cui Y, Yang Y. Circuits and functions of the lateral habenula in health and in disease. Nat Rev Neurosci. 2020;21:277–95.
pubmed: 32269316 doi: 10.1038/s41583-020-0292-4
Cui Y, Yang Y, Ni Z, Dong Y, Cai G, Foncelle A, et al. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature. 2018;554:323–7.
pubmed: 29446379 doi: 10.1038/nature25752
Lecca S, Meye FJ, Trusel M, Tchenio A, Harris J, Schwarz MK, et al. Aversive stimuli drive hypothalamus-to-habenula excitation to promote escape behavior. Elife. 2017;6:e30697.
pubmed: 28871962 pmcid: 5606847 doi: 10.7554/eLife.30697
Li B, Piriz J, Mirrione M, Chung C, Proulx CD, Schulz D, et al. Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature. 2011;470:535–9.
pubmed: 21350486 pmcid: 3285101 doi: 10.1038/nature09742
Nuno-Perez A, Trusel M, Lalive AL, Congiu M, Gastaldo D, Tchenio A, et al. Stress undermines reward-guided cognitive performance through synaptic depression in the lateral habenula. Neuron. 2021;109:947–56.e5.
pubmed: 33535028 pmcid: 7980092 doi: 10.1016/j.neuron.2021.01.008
Zheng Z, Guo C, Li M, Yang L, Liu P, Zhang X, et al. Hypothalamus-habenula potentiation encodes chronic stress experience and drives depression onset. Neuron. 2022;110:1400–15.e6.
pubmed: 35114101 doi: 10.1016/j.neuron.2022.01.011
Flanigan ME, Aleyasin H, Li L, Burnett CJ, Chan KL, LeClair KB, et al. Orexin signaling in GABAergic lateral habenula neurons modulates aggressive behavior in male mice. Nat Neurosci. 2020;23:638–50.
pubmed: 32284606 pmcid: 7195257 doi: 10.1038/s41593-020-0617-7
Hashikawa Y, Hashikawa K, Rossi MA, Basiri ML, Liu Y, Johnston NL, et al. Transcriptional and Spatial Resolution of Cell Types in the Mammalian Habenula. Neuron. 2020;106:743–58.e5.
pubmed: 32272058 pmcid: 7285796 doi: 10.1016/j.neuron.2020.03.011
Sylwestrak EL, Jo Y, Vesuna S, Wang X, Holcomb B, Tien RH, et al. Cell-type-specific population dynamics of diverse reward computations. Cell. 2022;185:3568–87.e27.
pubmed: 36113428 doi: 10.1016/j.cell.2022.08.019
Wallace ML, Huang KW, Hochbaum D, Hyun M, Radeljic G, Sabatini BL. Anatomical and single-cell transcriptional profiling of the murine habenular complex. Elife. 2020;9:e51271.
pubmed: 32043968 pmcid: 7012610 doi: 10.7554/eLife.51271
Grewe BF, Gründemann J, Kitch LJ, Lecoq JA, Parker JG, Marshall JD, et al. Neural ensemble dynamics underlying a long-term associative memory. Nature. 2017;543:670–5.
pubmed: 28329757 pmcid: 5378308 doi: 10.1038/nature21682
Balsamo G, Blanco-Hernández E, Liang F, Naumann RK, Coletta S, Burgalossi A, et al. Modular microcircuit organization of the presubicular head-direction map. Cell Rep. 2022;39:110684.
pubmed: 35417686 doi: 10.1016/j.celrep.2022.110684
Rossi MA, Basiri ML, Liu Y, Hashikawa Y, Hashikawa K, Fenno LE, et al. Transcriptional and functional divergence in lateral hypothalamic glutamate neurons projecting to the lateral habenula and ventral tegmental area. Neuron. 2021;109:3823–37.e6.
pubmed: 34624220 pmcid: 8812999 doi: 10.1016/j.neuron.2021.09.020
Congiu M, Trusel M, Pistis M, Mameli M, Lecca S. Opposite responses to aversive stimuli in lateral habenula neurons. Eur J Neurosci. 2019;50:2921–30.
pubmed: 30860301 doi: 10.1111/ejn.14400
Diamantaki M, Coletta S, Nasr K, Zeraati R, Laturnus S, Berens P, et al. Manipulating Hippocampal Place Cell Activity by Single-Cell Stimulation in Freely Moving Mice. Cell Rep. 2018;23:32–8.
pubmed: 29617670 doi: 10.1016/j.celrep.2018.03.031
Burgalossi A, Herfst L, von Heimendahl M, Förste H, Haskic K, Schmidt M, et al. Microcircuits of functionally identified neurons in the rat medial entorhinal cortex. Neuron. 2011;70:773–86.
pubmed: 21609831 doi: 10.1016/j.neuron.2011.04.003
Benabid AL, Jeaugey L. Cells of the rat lateral habenula respond to high-threshold somatosensory inputs. Neurosci Lett. 1989;96:289–94.
pubmed: 2717054 doi: 10.1016/0304-3940(89)90393-5
Dong WQ, Wilson OB, Skolnick MH, Dafny N. Hypothalamic, dorsal raphe and external electrical stimulation modulate noxious evoked responses of habenula neurons. Neuroscience. 1992;48:933–40.
pubmed: 1630629 doi: 10.1016/0306-4522(92)90281-6
Li H, Pullmann D, Jhou TC. Valence-encoding in the lateral habenula arises from the entopeduncular region. Elife. 2019;8:e41223.
pubmed: 30855228 pmcid: 6456292 doi: 10.7554/eLife.41223
Hinton, GE, Roweis, S Stochastic neighbor embedding. Advances in neural information processing systems 2002;15:857–64.
Penzo MA, Robert V, Tucciarone J, De Bundel D, Wang M, Van Aelst L, et al. The paraventricular thalamus controls a central amygdala fear circuit. Nature. 2015;519:455–9.
pubmed: 25600269 pmcid: 4376633 doi: 10.1038/nature13978
Lalive AL, Congiu M, Lewis C, Groos D, Clerke JA, Tchenio A, et al. Synaptic inhibition in the lateral habenula shapes reward anticipation. Curr Biol. 2022;32:1829–36.e4.
pubmed: 35259343 doi: 10.1016/j.cub.2022.02.035
Shabel SJ, Proulx CD, Trias A, Murphy RT, Malinow R. Input to the lateral habenula from the basal ganglia is excitatory, aversive, and suppressed by serotonin. Neuron. 2012;74:475–81.
pubmed: 22578499 pmcid: 3471532 doi: 10.1016/j.neuron.2012.02.037
Shabel SJ, Proulx CD, Piriz J, Malinow R. Mood regulation. GABA/glutamate co-release controls habenula output and is modified by antidepressant treatment. Science. 2014;345:1494–8.
pubmed: 25237099 pmcid: 4305433 doi: 10.1126/science.1250469
Wolfe CIC, Hwang EK, Ijomor EC, Zapata A, Hoffman AF, Lupica CR. Muscarinic Acetylcholine M
pubmed: 35764382 pmcid: 9295832 doi: 10.1523/JNEUROSCI.0645-22.2022
Jing M, Li Y, Zeng J, Huang P, Skirzewski M, Kljakic O, et al. An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. Nat Methods. 2020;17:1139–46.
pubmed: 32989318 pmcid: 7606762 doi: 10.1038/s41592-020-0953-2
Marvin JS, Borghuis BG, Tian L, Cichon J, Harnett MT, Akerboom J, et al. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat Methods. 2013;10:162–70.
pubmed: 23314171 pmcid: 4469972 doi: 10.1038/nmeth.2333
Marvin JS, Shimoda Y, Magloire V, Leite M, Kawashima T, Jensen TP, et al. A genetically encoded fluorescent sensor for in vivo imaging of GABA. Nat Methods. 2019;16:763–70.
pubmed: 31308547 doi: 10.1038/s41592-019-0471-2
Wan J, Peng W, Li X, Qian T, Song K, Zeng J, et al. A genetically encoded sensor for measuring serotonin dynamics. Nat Neurosci. 2021;24:746–52.
pubmed: 33821000 pmcid: 8544647 doi: 10.1038/s41593-021-00823-7
Yu XD, Zhu Y, Sun QX, Deng F, Wan J, Zheng D, et al. Distinct serotonergic pathways to the amygdala underlie separate behavioral features of anxiety. Nat Neurosci. 2022;25:1651–63.
pubmed: 36446933 doi: 10.1038/s41593-022-01200-8
Huang L, Xi Y, Peng Y, Yang Y, Huang X, Fu Y, et al. A Visual Circuit Related to Habenula Underlies the Antidepressive Effects of Light Therapy. Neuron. 2019;102:128–2.e8.
pubmed: 30795900 doi: 10.1016/j.neuron.2019.01.037
Shelton L, Pendse G, Maleki N, Moulton EA, Lebel A, Becerra L, et al. Mapping pain activation and connectivity of the human habenula. J Neurophysiol. 2012;107:2633–48.
pubmed: 22323632 pmcid: 3362277 doi: 10.1152/jn.00012.2012
Bromberg-Martin ES, Matsumoto M, Hikosaka O. Distinct tonic and phasic anticipatory activity in lateral habenula and dopamine neurons. Neuron. 2010;67:144–55.
pubmed: 20624598 pmcid: 2905384 doi: 10.1016/j.neuron.2010.06.016
Maroteaux M, Mameli M. Cocaine evokes projection-specific synaptic plasticity of lateral habenula neurons. J Neurosci. 2012;32:12641–6.
pubmed: 22956853 pmcid: 6621263 doi: 10.1523/JNEUROSCI.2405-12.2012
Levinstein MR, Bergkamp DJ, Lewis ZK, Tsobanoudis A, Hashikawa K, Stuber GD, et al. PACAP-expressing neurons in the lateral habenula diminish negative emotional valence. Genes Brain Behav. 2022;21:e12801.
pubmed: 35304804 pmcid: 9444940 doi: 10.1111/gbb.12801
Lee D, Hyun JH, Jung K, Hannan P, Kwon HB. A calcium- and light-gated switch to induce gene expression in activated neurons. Nat Biotechnol. 2017;35:858–63.
pubmed: 28650460 doi: 10.1038/nbt.3902
Sørensen AT, Cooper YA, Baratta MV, Weng FJ, Zhang Y, Ramamoorthi K, et al. A robust activity marking system for exploring active neuronal ensembles. Elife. 2016;5:e13918.
pubmed: 27661450 pmcid: 5035142 doi: 10.7554/eLife.13918
Trojanowski NF, Bottorff J, Turrigiano GG. Activity labeling in vivo using CaMPARI2 reveals intrinsic and synaptic differences between neurons with high and low firing rate set points. Neuron. 2021;109:663–76.e5.
pubmed: 33333001 doi: 10.1016/j.neuron.2020.11.027
James MH, Charnley JL, Flynn JR, Smith DW, Dayas CV. Propensity to ‘relapse’ following exposure to cocaine cues is associated with the recruitment of specific thalamic and epithalamic nuclei. Neuroscience. 2011;199:235–42.
pubmed: 21985936 doi: 10.1016/j.neuroscience.2011.09.047
Zapata A, Hwang EK, Lupica CR. Lateral Habenula Involvement in Impulsive Cocaine Seeking. Neuropsychopharmacology. 2017;42:1103–12.
pubmed: 28025973 pmcid: 5506796 doi: 10.1038/npp.2016.286
Tian J, Uchida N. Habenula Lesions Reveal that Multiple Mechanisms Underlie Dopamine Prediction Errors. Neuron. 2015;87:1304–16.
pubmed: 26365765 pmcid: 4583356 doi: 10.1016/j.neuron.2015.08.028
Abraham WC, Bear MF. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 1996;19:126–30.
pubmed: 8658594 doi: 10.1016/S0166-2236(96)80018-X
Seol GH, Ziburkus J, Huang S, Song L, Kim IT, Takamiya K, et al. Neuromodulators control the polarity of spike-timing-dependent synaptic plasticity. Neuron. 2007;55:919–29.
pubmed: 17880895 pmcid: 2756178 doi: 10.1016/j.neuron.2007.08.013
Edelmann E, Lessmann V. Dopamine Modulates Spike Timing-Dependent Plasticity and Action Potential Properties in CA1 Pyramidal Neurons of Acute Rat Hippocampal Slices. Front Synaptic Neurosci. 2011;3:6.
pubmed: 22065958 pmcid: 3207259 doi: 10.3389/fnsyn.2011.00006
Bissière S, Humeau Y, Lüthi A. Dopamine gates LTP induction in lateral amygdala by suppressing feedforward inhibition. Nat Neurosci. 2003;6:587–92.
pubmed: 12740581 doi: 10.1038/nn1058
Palacios-Filardo J, Mellor JR. Neuromodulation of hippocampal long-term synaptic plasticity. Curr Opin Neurobiol. 2019;54:37–43.
pubmed: 30212713 pmcid: 6367596 doi: 10.1016/j.conb.2018.08.009
Poorthuis RB, Enke L, Letzkus JJ. Cholinergic circuit modulation through differential recruitment of neocortical interneuron types during behaviour. J Physiol. 2014;592:4155–64.
pubmed: 24879871 pmcid: 4215768 doi: 10.1113/jphysiol.2014.273862

Auteurs

Mauro Congiu (M)

The Department of Fundamental Neuroscience, The University of Lausanne, 1005, Lausanne, Switzerland.

Sarah Mondoloni (S)

The Department of Fundamental Neuroscience, The University of Lausanne, 1005, Lausanne, Switzerland.

Ioannis S Zouridis (IS)

Institute of Neurobiology and Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, 72076, Tübingen, Germany.
Graduate Training Centre of Neuroscience, International Max Planck Research School (IMPRS), University of Tübingen, Tübingen, Germany.

Lisa Schmors (L)

Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
Hertie Institute for AI in Brain Health, University of Tübingen, Tübingen, Germany.

Salvatore Lecca (S)

The Department of Fundamental Neuroscience, The University of Lausanne, 1005, Lausanne, Switzerland.

Arnaud L Lalive (AL)

The Department of Fundamental Neuroscience, The University of Lausanne, 1005, Lausanne, Switzerland.

Kyllian Ginggen (K)

The Department of Biomedical Sciences, The University of Lausanne, 1005, Lausanne, Switzerland.

Fei Deng (F)

School of Life Sciences, Peking University, Beijing, 100871, China.

Philipp Berens (P)

Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
Tübingen AI Center, University of Tübingen, Tübingen, Germany.

Rosa Chiara Paolicelli (RC)

The Department of Biomedical Sciences, The University of Lausanne, 1005, Lausanne, Switzerland.

Yulong Li (Y)

School of Life Sciences, Peking University, Beijing, 100871, China.

Andrea Burgalossi (A)

Institute of Neurobiology and Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, 72076, Tübingen, Germany.

Manuel Mameli (M)

The Department of Fundamental Neuroscience, The University of Lausanne, 1005, Lausanne, Switzerland. manuel.mameli@unil.ch.
Inserm, UMR-S 839, 75005, Paris, France. manuel.mameli@unil.ch.

Classifications MeSH