Rubiflavin G, photorubiflavin G, and photorubiflavin E: Novel pluramycin derivatives from Streptomyces sp. W2061 and their anticancer activity against breast cancer cells.


Journal

The Journal of antibiotics
ISSN: 1881-1469
Titre abrégé: J Antibiot (Tokyo)
Pays: England
ID NLM: 0151115

Informations de publication

Date de publication:
10 2023
Historique:
received: 11 04 2023
accepted: 21 06 2023
revised: 14 06 2023
medline: 23 10 2023
pubmed: 7 7 2023
entrez: 6 7 2023
Statut: ppublish

Résumé

The pluramycin family of antibiotics comprises angucycline compounds derived from actinomycetes that possess anticancer and antibacterial properties. Pluramycins are structurally characterized by two aminoglycosides linked by a carbon-carbon bond next to the γ-pyrone angucycline backbone. Kidamycins (3, 4) and rubiflavins (6-9) were screened through liquid chromatography-mass spectrometry analysis of the crude extracts of Streptomyces sp. W2061, which was cultured in complex media under phosphate-limiting conditions. Newly isolated rubiflavin G (7) and photoactivated compounds (8, 9) were characterized using exhaustive 1D and 2D nuclear magnetic resonance analysis. The cytotoxicity of kidamycin (3), photokidamycin (4), and photorubiflavin G (8) was determined using two human breast cancer cell lines-MCF7 and MDA-MB-231. Compared to MCF7 cells, MDA-MB-231 cells were more sensitive to the active compounds, and photokidamycin (4) considerably inhibited MCF7 and MDA-MB-231 cell growth (IC

Identifiants

pubmed: 37414938
doi: 10.1038/s41429-023-00643-w
pii: 10.1038/s41429-023-00643-w
doi:

Substances chimiques

rubiflavin 11016-71-0
pluramycin 11016-27-6
Aminoglycosides 0
Anti-Bacterial Agents 0
Carbon 7440-44-0
Antineoplastic Agents 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

585-591

Informations de copyright

© 2023. The Author(s), under exclusive licence to the Japan Antibiotics Research Association.

Références

Martin JF, Demain AL. Control of antibiotic biosynthesis. Microbiol Rev. 1980;44:230–51.
doi: 10.1128/mr.44.2.230-251.1980 pubmed: 6991900 pmcid: 373178
Demain AL, Sanchez S. Microbial drug discovery: 80 years of progress. J Antibiot. 2009;62:5–16.
doi: 10.1038/ja.2008.16
van Wezel GP, McDowall KJ. The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep. 2011;28:1311–33.
doi: 10.1039/c1np00003a pubmed: 21611665
Qin Y, et al. OSMAC strategy integrated with molecular networking discovery peniciacetals A-I, nine new meroterpenoids from the mangrove-derived fungus Penicillium sp. HLLG-122. Bioorg Chem. 2023;130:106271.
doi: 10.1016/j.bioorg.2022.106271 pubmed: 36402026
Hemphill CFP, et al. OSMAC approach leads to new fusarielin metabolites from Fusarium tricinctum. J Antibiot. 2017;70:726–32.
doi: 10.1038/ja.2017.21
Maeda K, et al. A new antitumor substance, pluramycin; studies on antitumor substances produced by Actinomycetes. XI. J Antibiot. 1956;9:75–81.
Schmitz H, Crook KE Jr., Bush JA. Hedamycin, a new antitumor antibiotic. I. Production, isolation, and characterization. Antimicrob Agents Chemother. 1966;6:606–12.
pubmed: 5985296
Kanda N. A new antitumor antibiotic, kidamycin. I. Isolation, purification and properties of kidamycin. J Antibiot. 1971; 24:599–606.
doi: 10.7164/antibiotics.24.599
Jackson M, et al. Altromycins, novel pluramycin-like antibiotics. I. Taxonomy of the producing organism, fermentation and antibacterial activity. J Antibiot. 1990;43:223–8.
doi: 10.7164/antibiotics.43.223
Aszalos A, Jelinek M, Berk B. Rubiflavin, a toxic antitumor antibiotic. Antimicrob Agents Chemother. 1964;10:68–74.
pubmed: 14288020
Bililign T, Griffith BR, Thorson JS. Structure, activity, synthesis and biosynthesis of aryl-C-glycosides. Nat Prod Rep. 2005;22:742–60.
doi: 10.1039/b407364a pubmed: 16311633
Cairns MJ, Murray V. Detection of protein-DNA interactions at beta-globin gene cluster in intact human cells utilizing hedamycin as DNA-damaging agent. DNA Cell Biol. 1998;17:325–33.
doi: 10.1089/dna.1998.17.325 pubmed: 9570149
Masuma R, Tanaka Y, Tanaka H, Omura S. Production of nanaomycin and other antibiotics by phosphate-depressed fermentation using phosphate-trapping agents. J Antibiot. 1986;39:1557–64.
doi: 10.7164/antibiotics.39.1557
Tanaka Y, Fermentation processes in screening for new bioactive substances. In: Omura S, editors. The Search for Bioactive Compounds from Microorganisms. New York: Springer-Verlag; 1992. p. 303–63.
Heo KT, Lee B, Jang JH, Hong YS. Elucidation of the di-C-glycosylation steps during biosynthesis of the antitumor antibiotic, kidamycin. Front Bioeng Biotechnol. 2022;10:985696.
doi: 10.3389/fbioe.2022.985696 pubmed: 36091425 pmcid: 9452638
Martin JF, Rodriguez-Garcia A, Liras P. The master regulator PhoP coordinates phosphate and nitrogen metabolism, respiration, cell differentiation and antibiotic biosynthesis: comparison in Streptomyces coelicolor and Streptomyces avermitilis. J Antibiot. 2017;70:534–41.
doi: 10.1038/ja.2017.19
Omura S, Tomoda H, Xu QM, Takahashi Y, Iwai Y. Triacsins, new inhibitors of acyl-CoA synthetase produced by Streptomyces sp. J Antibiot. 1986;39:1211–18.
doi: 10.7164/antibiotics.39.1211
Andreas Fredenhagen US. The Structures of some products from the photodegradation of the pluramycin antibiotics hedamycin and kidamycin. Helv. Chim. Acta. 1985; 68:391–402.
Tsukahara K, Toume K, Ito H, Ishikawa N, Ishibashi M. Isolation of beta-indomycinone guided by cytotoxicity tests from Streptomyces sp. IFM11607 and revision of its double bond geometry. Nat Prod Commun. 2014;9:1327–28.
pubmed: 25918804
Mabit T, et al. Total Synthesis of gamma-indomycinone and kidamycinone by means of two regioselective Diels-Alder reactions. J Org Chem. 2017;82:5710–19.
doi: 10.1021/acs.joc.7b00544 pubmed: 28492076
Ando Y, Maezawa Y, Shimura J, Kitamura K, Matsumoto T, Suzuki K. Toward pluramycins with epoxy side chain: Syntheses of kidamycinone and epoxykidamycinone (saptomycinone H). Chem Asian J. 2020;15:828–32.
doi: 10.1002/asia.201901807 pubmed: 32017465
Hertweck C, Luzhetskyy A, Rebets Y, Bechthold A. Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat Prod Rep. 2007;24:162–90.
doi: 10.1039/B507395M pubmed: 17268612
Williamson RT, McDonald LA, Barbieri LR, Carter GT. In support of the original medermycin/lactoquinomycin A structure. Org Lett. 2002;4:4659–62.
doi: 10.1021/ol027086g pubmed: 12489954
Jiang YJ, et al. Medermycin-type naphthoquinones from the marine-derived Streptomyces sp. XMA39. J Nat Prod. 2018;81:2120–24.
doi: 10.1021/acs.jnatprod.8b00544 pubmed: 30209946
Tatsuta K, Ozeki H, Yamaguchi M, Tanaka M, Okui T, Nakata M. Total synthesis and biological evaluation of unnatural (-)-medermycin [(-)-lactoquinomycin]. J Antibiot. 1991;44:901–2.
doi: 10.7164/antibiotics.44.901
Cai X, et al. Identification of a C-glycosyltransferase Involved in medermycin biosynthesis. ACS Chem Biol. 2021;16:1059–69.
doi: 10.1021/acschembio.1c00227 pubmed: 34080843
Zhou B, Jiang YJ, Ji YY, Zhang HJ, Shen L. Lactoquinomycin C and D, two new medermycin derivatives from the marine-derived Streptomyces sp. SS17A. Nat Prod Res. 2020;34:1213–18.
doi: 10.1080/14786419.2018.1556265 pubmed: 30806517
Narita M, Asaoka T, Yano K, Kukita K, Yokoi K, Nakajima T. Novel antibiotic SS21020D and production thereof. Japan Patent Office JPS61115081A. 1986. https://patents.google.com/patent/JPS61115081A/en .
Nadig H, Séquin U, Bunge RH, Hurley TR, Murphey DB, French JC. Isolation and structure of a new antibiotic related to Rubiflavin A. Helv Chim Acta. 1985;68:953–957.
doi: 10.1002/hlca.19850680419
Abe N, Enoki N, Nakakita Y, Uchida H, Nakamura T, Munekata M. Deacetylation effect of N,N-dimethylvancosamine in saptomycins D and E. J Antibiot. 1993;46:692–7.
doi: 10.7164/antibiotics.46.692
Abe N, Enoki N, Nakakita Y, Uchida H, Nakamura T, Munekata M. Novel antitumor antibiotics, saptomycins. II. Isolation, physico-chemical properties and structure elucidation. J Antibiot. 1993;46:1536–49.
doi: 10.7164/antibiotics.46.1536
Fredenhagen A, Sequin U. The photodeactivation of hedamycin, an antitumor antibiotic of the pluramycin type. J Antibiot. 1985;38:236–41.
doi: 10.7164/antibiotics.38.236
Kitamura K, Ando Y, Matsumoto T, Suzuki K. Total synthesis of aryl C-glycoside natural products: Strategies and tactics. Chem Rev. 2018;118:1495–1598.
doi: 10.1021/acs.chemrev.7b00380 pubmed: 29281269
Bililign T, Hyun CG, Williams JS, Czisny AM, Thorson JS. The hedamycin locus implicates a novel aromatic PKS priming mechanism. Chem Biol. 2004;11:959–69.
doi: 10.1016/j.chembiol.2004.04.016 pubmed: 15271354

Auteurs

Byeongsan Lee (B)

Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Korea.
College of Pharmacy, Chungbuk National University, Cheongju, 28160, Korea.

Ga-Eun Lee (GE)

College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, 14662, Korea.

Gwi Ja Hwang (GJ)

Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Korea.

Kyung Taek Heo (KT)

Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Korea.

Jae Kyoung Lee (JK)

Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Korea.

Jun-Pil Jang (JP)

Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Korea.

Bang Yeon Hwang (BY)

College of Pharmacy, Chungbuk National University, Cheongju, 28160, Korea.

Jae-Hyuk Jang (JH)

Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Korea. jangjh@kribb.re.kr.
KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34141, Korea. jangjh@kribb.re.kr.

Yong-Yeon Cho (YY)

College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, 14662, Korea. yongyeon@catholic.ac.kr.

Young-Soo Hong (YS)

Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Korea. hongsoo@kribb.re.kr.
KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34141, Korea. hongsoo@kribb.re.kr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH