Rubiflavin G, photorubiflavin G, and photorubiflavin E: Novel pluramycin derivatives from Streptomyces sp. W2061 and their anticancer activity against breast cancer cells.
Journal
The Journal of antibiotics
ISSN: 1881-1469
Titre abrégé: J Antibiot (Tokyo)
Pays: England
ID NLM: 0151115
Informations de publication
Date de publication:
10 2023
10 2023
Historique:
received:
11
04
2023
accepted:
21
06
2023
revised:
14
06
2023
medline:
23
10
2023
pubmed:
7
7
2023
entrez:
6
7
2023
Statut:
ppublish
Résumé
The pluramycin family of antibiotics comprises angucycline compounds derived from actinomycetes that possess anticancer and antibacterial properties. Pluramycins are structurally characterized by two aminoglycosides linked by a carbon-carbon bond next to the γ-pyrone angucycline backbone. Kidamycins (3, 4) and rubiflavins (6-9) were screened through liquid chromatography-mass spectrometry analysis of the crude extracts of Streptomyces sp. W2061, which was cultured in complex media under phosphate-limiting conditions. Newly isolated rubiflavin G (7) and photoactivated compounds (8, 9) were characterized using exhaustive 1D and 2D nuclear magnetic resonance analysis. The cytotoxicity of kidamycin (3), photokidamycin (4), and photorubiflavin G (8) was determined using two human breast cancer cell lines-MCF7 and MDA-MB-231. Compared to MCF7 cells, MDA-MB-231 cells were more sensitive to the active compounds, and photokidamycin (4) considerably inhibited MCF7 and MDA-MB-231 cell growth (IC
Identifiants
pubmed: 37414938
doi: 10.1038/s41429-023-00643-w
pii: 10.1038/s41429-023-00643-w
doi:
Substances chimiques
rubiflavin
11016-71-0
pluramycin
11016-27-6
Aminoglycosides
0
Anti-Bacterial Agents
0
Carbon
7440-44-0
Antineoplastic Agents
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
585-591Informations de copyright
© 2023. The Author(s), under exclusive licence to the Japan Antibiotics Research Association.
Références
Martin JF, Demain AL. Control of antibiotic biosynthesis. Microbiol Rev. 1980;44:230–51.
doi: 10.1128/mr.44.2.230-251.1980
pubmed: 6991900
pmcid: 373178
Demain AL, Sanchez S. Microbial drug discovery: 80 years of progress. J Antibiot. 2009;62:5–16.
doi: 10.1038/ja.2008.16
van Wezel GP, McDowall KJ. The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep. 2011;28:1311–33.
doi: 10.1039/c1np00003a
pubmed: 21611665
Qin Y, et al. OSMAC strategy integrated with molecular networking discovery peniciacetals A-I, nine new meroterpenoids from the mangrove-derived fungus Penicillium sp. HLLG-122. Bioorg Chem. 2023;130:106271.
doi: 10.1016/j.bioorg.2022.106271
pubmed: 36402026
Hemphill CFP, et al. OSMAC approach leads to new fusarielin metabolites from Fusarium tricinctum. J Antibiot. 2017;70:726–32.
doi: 10.1038/ja.2017.21
Maeda K, et al. A new antitumor substance, pluramycin; studies on antitumor substances produced by Actinomycetes. XI. J Antibiot. 1956;9:75–81.
Schmitz H, Crook KE Jr., Bush JA. Hedamycin, a new antitumor antibiotic. I. Production, isolation, and characterization. Antimicrob Agents Chemother. 1966;6:606–12.
pubmed: 5985296
Kanda N. A new antitumor antibiotic, kidamycin. I. Isolation, purification and properties of kidamycin. J Antibiot. 1971; 24:599–606.
doi: 10.7164/antibiotics.24.599
Jackson M, et al. Altromycins, novel pluramycin-like antibiotics. I. Taxonomy of the producing organism, fermentation and antibacterial activity. J Antibiot. 1990;43:223–8.
doi: 10.7164/antibiotics.43.223
Aszalos A, Jelinek M, Berk B. Rubiflavin, a toxic antitumor antibiotic. Antimicrob Agents Chemother. 1964;10:68–74.
pubmed: 14288020
Bililign T, Griffith BR, Thorson JS. Structure, activity, synthesis and biosynthesis of aryl-C-glycosides. Nat Prod Rep. 2005;22:742–60.
doi: 10.1039/b407364a
pubmed: 16311633
Cairns MJ, Murray V. Detection of protein-DNA interactions at beta-globin gene cluster in intact human cells utilizing hedamycin as DNA-damaging agent. DNA Cell Biol. 1998;17:325–33.
doi: 10.1089/dna.1998.17.325
pubmed: 9570149
Masuma R, Tanaka Y, Tanaka H, Omura S. Production of nanaomycin and other antibiotics by phosphate-depressed fermentation using phosphate-trapping agents. J Antibiot. 1986;39:1557–64.
doi: 10.7164/antibiotics.39.1557
Tanaka Y, Fermentation processes in screening for new bioactive substances. In: Omura S, editors. The Search for Bioactive Compounds from Microorganisms. New York: Springer-Verlag; 1992. p. 303–63.
Heo KT, Lee B, Jang JH, Hong YS. Elucidation of the di-C-glycosylation steps during biosynthesis of the antitumor antibiotic, kidamycin. Front Bioeng Biotechnol. 2022;10:985696.
doi: 10.3389/fbioe.2022.985696
pubmed: 36091425
pmcid: 9452638
Martin JF, Rodriguez-Garcia A, Liras P. The master regulator PhoP coordinates phosphate and nitrogen metabolism, respiration, cell differentiation and antibiotic biosynthesis: comparison in Streptomyces coelicolor and Streptomyces avermitilis. J Antibiot. 2017;70:534–41.
doi: 10.1038/ja.2017.19
Omura S, Tomoda H, Xu QM, Takahashi Y, Iwai Y. Triacsins, new inhibitors of acyl-CoA synthetase produced by Streptomyces sp. J Antibiot. 1986;39:1211–18.
doi: 10.7164/antibiotics.39.1211
Andreas Fredenhagen US. The Structures of some products from the photodegradation of the pluramycin antibiotics hedamycin and kidamycin. Helv. Chim. Acta. 1985; 68:391–402.
Tsukahara K, Toume K, Ito H, Ishikawa N, Ishibashi M. Isolation of beta-indomycinone guided by cytotoxicity tests from Streptomyces sp. IFM11607 and revision of its double bond geometry. Nat Prod Commun. 2014;9:1327–28.
pubmed: 25918804
Mabit T, et al. Total Synthesis of gamma-indomycinone and kidamycinone by means of two regioselective Diels-Alder reactions. J Org Chem. 2017;82:5710–19.
doi: 10.1021/acs.joc.7b00544
pubmed: 28492076
Ando Y, Maezawa Y, Shimura J, Kitamura K, Matsumoto T, Suzuki K. Toward pluramycins with epoxy side chain: Syntheses of kidamycinone and epoxykidamycinone (saptomycinone H). Chem Asian J. 2020;15:828–32.
doi: 10.1002/asia.201901807
pubmed: 32017465
Hertweck C, Luzhetskyy A, Rebets Y, Bechthold A. Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat Prod Rep. 2007;24:162–90.
doi: 10.1039/B507395M
pubmed: 17268612
Williamson RT, McDonald LA, Barbieri LR, Carter GT. In support of the original medermycin/lactoquinomycin A structure. Org Lett. 2002;4:4659–62.
doi: 10.1021/ol027086g
pubmed: 12489954
Jiang YJ, et al. Medermycin-type naphthoquinones from the marine-derived Streptomyces sp. XMA39. J Nat Prod. 2018;81:2120–24.
doi: 10.1021/acs.jnatprod.8b00544
pubmed: 30209946
Tatsuta K, Ozeki H, Yamaguchi M, Tanaka M, Okui T, Nakata M. Total synthesis and biological evaluation of unnatural (-)-medermycin [(-)-lactoquinomycin]. J Antibiot. 1991;44:901–2.
doi: 10.7164/antibiotics.44.901
Cai X, et al. Identification of a C-glycosyltransferase Involved in medermycin biosynthesis. ACS Chem Biol. 2021;16:1059–69.
doi: 10.1021/acschembio.1c00227
pubmed: 34080843
Zhou B, Jiang YJ, Ji YY, Zhang HJ, Shen L. Lactoquinomycin C and D, two new medermycin derivatives from the marine-derived Streptomyces sp. SS17A. Nat Prod Res. 2020;34:1213–18.
doi: 10.1080/14786419.2018.1556265
pubmed: 30806517
Narita M, Asaoka T, Yano K, Kukita K, Yokoi K, Nakajima T. Novel antibiotic SS21020D and production thereof. Japan Patent Office JPS61115081A. 1986. https://patents.google.com/patent/JPS61115081A/en .
Nadig H, Séquin U, Bunge RH, Hurley TR, Murphey DB, French JC. Isolation and structure of a new antibiotic related to Rubiflavin A. Helv Chim Acta. 1985;68:953–957.
doi: 10.1002/hlca.19850680419
Abe N, Enoki N, Nakakita Y, Uchida H, Nakamura T, Munekata M. Deacetylation effect of N,N-dimethylvancosamine in saptomycins D and E. J Antibiot. 1993;46:692–7.
doi: 10.7164/antibiotics.46.692
Abe N, Enoki N, Nakakita Y, Uchida H, Nakamura T, Munekata M. Novel antitumor antibiotics, saptomycins. II. Isolation, physico-chemical properties and structure elucidation. J Antibiot. 1993;46:1536–49.
doi: 10.7164/antibiotics.46.1536
Fredenhagen A, Sequin U. The photodeactivation of hedamycin, an antitumor antibiotic of the pluramycin type. J Antibiot. 1985;38:236–41.
doi: 10.7164/antibiotics.38.236
Kitamura K, Ando Y, Matsumoto T, Suzuki K. Total synthesis of aryl C-glycoside natural products: Strategies and tactics. Chem Rev. 2018;118:1495–1598.
doi: 10.1021/acs.chemrev.7b00380
pubmed: 29281269
Bililign T, Hyun CG, Williams JS, Czisny AM, Thorson JS. The hedamycin locus implicates a novel aromatic PKS priming mechanism. Chem Biol. 2004;11:959–69.
doi: 10.1016/j.chembiol.2004.04.016
pubmed: 15271354