Chest configuration in children and adolescents with infantile nephropathic cystinosis compared with other chronic kidney disease entities and its clinical determinants.
Anterior–posterior chest diameter
Biacromial diameter
Chest
Chronic kidney disease
Fanconi syndrome
Infantile nephropathic cystinosis
Journal
Pediatric nephrology (Berlin, Germany)
ISSN: 1432-198X
Titre abrégé: Pediatr Nephrol
Pays: Germany
ID NLM: 8708728
Informations de publication
Date de publication:
12 2023
12 2023
Historique:
received:
13
03
2023
accepted:
13
06
2023
revised:
09
06
2023
medline:
23
10
2023
pubmed:
7
7
2023
entrez:
6
7
2023
Statut:
ppublish
Résumé
Infantile nephropathic cystinosis (INC) is a systemic lysosomal storage disease causing intracellular cystine accumulation, resulting in renal Fanconi syndrome, progressive kidney disease (CKD), rickets, malnutrition, and myopathy. An INC-specific disproportionately diminished trunk length compared to leg length poses questions regarding the functionality of the trunk. Thus, we prospectively investigated thoracic dimensions and proportions, as well as their clinical determinants in 44 pediatric patients with INC with CKD stages 1-5 and 97 age-matched patients with CKD of other etiology between the ages of 2-17 years. A total of 92 and 221 annual measurements of patients with INC and CKD, respectively, were performed, and associations between anthropometric and clinical parameters were assessed using linear mixed-effects models. Patients with INC exhibited altered chest dimensions that were distinct from CKD controls, characterized by markedly increased chest depth to height and chest depth to chest width ratio z-scores (> 1.0), while those of patients with CKD were only mildly affected (z-score within ± 1.0). Ratio z-scores differed significantly between both patient groups from 2-6 years of age onward. The degree of chest disproportion in INC patients was significantly associated with both the degree of CKD and tubular dysfunction (e.g., low serum phosphate and bicarbonate) across three different age groups (2-6, 7-12, and 13-17 years). Our data show an INC-specific alteration in thoracic shape from early childhood onward, which is distinct from CKD of other etiologies, suggesting early childhood subclinical changes of the musculoskeletal unit of the thoracic cage, which are associated with kidney function. A higher resolution version of the Graphical abstract is available as Supplementary information.
Sections du résumé
BACKGROUND
Infantile nephropathic cystinosis (INC) is a systemic lysosomal storage disease causing intracellular cystine accumulation, resulting in renal Fanconi syndrome, progressive kidney disease (CKD), rickets, malnutrition, and myopathy. An INC-specific disproportionately diminished trunk length compared to leg length poses questions regarding the functionality of the trunk.
METHODS
Thus, we prospectively investigated thoracic dimensions and proportions, as well as their clinical determinants in 44 pediatric patients with INC with CKD stages 1-5 and 97 age-matched patients with CKD of other etiology between the ages of 2-17 years. A total of 92 and 221 annual measurements of patients with INC and CKD, respectively, were performed, and associations between anthropometric and clinical parameters were assessed using linear mixed-effects models.
RESULTS
Patients with INC exhibited altered chest dimensions that were distinct from CKD controls, characterized by markedly increased chest depth to height and chest depth to chest width ratio z-scores (> 1.0), while those of patients with CKD were only mildly affected (z-score within ± 1.0). Ratio z-scores differed significantly between both patient groups from 2-6 years of age onward. The degree of chest disproportion in INC patients was significantly associated with both the degree of CKD and tubular dysfunction (e.g., low serum phosphate and bicarbonate) across three different age groups (2-6, 7-12, and 13-17 years).
CONCLUSION
Our data show an INC-specific alteration in thoracic shape from early childhood onward, which is distinct from CKD of other etiologies, suggesting early childhood subclinical changes of the musculoskeletal unit of the thoracic cage, which are associated with kidney function. A higher resolution version of the Graphical abstract is available as Supplementary information.
Identifiants
pubmed: 37415042
doi: 10.1007/s00467-023-06058-x
pii: 10.1007/s00467-023-06058-x
pmc: PMC10584709
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3989-3999Informations de copyright
© 2023. The Author(s).
Références
Nesterova G, Gahl WA (2013) Cystinosis: The evolution of a treatable disease. Pediatr Nephrol 28:51–59. https://doi.org/10.1007/s00467-012-2242-5
doi: 10.1007/s00467-012-2242-5
pubmed: 22903658
Cherqui S, Courtoy PJ (2017) The renal Fanconi syndrome in cystinosis: pathogenic insights and therapeutic perspectives. Nat Rev Nephrol 13:115–131. https://doi.org/10.1038/nrneph.2016.182
doi: 10.1038/nrneph.2016.182
pubmed: 27990015
Veys KR, Elmonem MA, Arcolino FO, van den Heuvel L, Levtchenko E (2017) Nephropathic cystinosis: an update. Curr Opin Pediatr 29:168–178. https://doi.org/10.1097/MOP.0000000000000462
doi: 10.1097/MOP.0000000000000462
pubmed: 28107209
Gahl WA, Dalakas MC, Charnas L, Chen KT, Pezeshkpour GH, Kuwabara T, Davis SL, Chesney RW, Fink J, Hutchison HT (1988) Myopathy and cystine storage in muscles in a patient with nephropathic cystinosis. N Engl J Med 319:1461–1464. https://doi.org/10.1056/NEJM198812013192206
doi: 10.1056/NEJM198812013192206
pubmed: 3185663
Charnas LR, Luciano CA, Dalakas M, Gilliatt RW, Bernardini I, Ishak K, Cwik VA, Fraker D, Brushart TA, Gahl WA (1994) Distal vacuolar myopathy in nephropathic cystinosis. Ann Neurol 35:181–188. https://doi.org/10.1002/ana.410350209
doi: 10.1002/ana.410350209
pubmed: 8109899
Haffner D, Leifheit-Nestler M, Alioli C, Bacchetta J (2022) Muscle and bone impairment in infantile nephropathic cystinosis: New concepts. Cells 11:170. https://doi.org/10.3390/cells11010170
doi: 10.3390/cells11010170
pubmed: 35011732
pmcid: 8749987
Anikster Y, Lacbawan F, Brantly M, Gochuico BL, Avila NA, Travis W, Gahl WA (2001) Pulmonary dysfunction in adults with nephropathic cystinosis. Chest 119:394–401. https://doi.org/10.1378/chest.119.2.394
doi: 10.1378/chest.119.2.394
pubmed: 11171714
El-Naggari MA, Elnour I, Al-Kindy H, Al-Shahrabally A, Abdelmogheth AA (2014) Successful management of a neglected case of nephropathic cystinosis. Sultan Qaboos Univ Med J 14:245
Edens MA, van Son WJ, de Greef MHG, Levtchenko EN, Blijham T, Wijkstra PJ (2006) Successful treatment of respiratory dysfunction in cystinosis by nocturnal non-invasive positive pressure ventilation. Clin Nephrol 66:306–309. https://doi.org/10.5414/cnp66306
doi: 10.5414/cnp66306
pubmed: 17064000
Kluck R, Müller S, Jagodzinski C, Hohenfellner K, Büscher A, Kemper MJ, Oh J, Billing H, Thumfart J, Weber LT, Acham-Roschitz B, Arbeiter K, Tönshoff B, Hagenberg M, Kanzelmeyer N, Pavičić L, Haffner D, Zivicnjak M (2022) Body growth, upper arm fat area, and clinical parameters in children with nephropathic cystinosis compared with other pediatric chronic kidney disease entities. J Inherit Metab Dis 45:192–202. https://doi.org/10.1002/jimd.12473
doi: 10.1002/jimd.12473
pubmed: 34989402
Van Stralen KJ, Emma F, Jager KJ, Verrina E, Schaefer F, Laube GF, Lewis MA, Levtchenko EN (2011) Improvement in the renal prognosis in nephropathic cystinosis. Clin J Am Soc Nephrol 6:2485–2491. https://doi.org/10.2215/CJN.02000311
doi: 10.2215/CJN.02000311
pubmed: 21868618
pmcid: 3359556
Mesa MS, Fuster V, Sánchez-Andrés A, Marrodán D (1993) Secular changes in stature and biacromial and bicristal diameters of young adult Spanish males. Am J Hum Biol 5:705–709. https://doi.org/10.1002/ajhb.1310050613
doi: 10.1002/ajhb.1310050613
pubmed: 28548352
Cacciari E, Mazzanti L, Tassinari D, Bergamaschi R, Magnani C, Ghini T, Tani G, Drago E, Nanni G, Cobianchi C (1989) Growth and sport. J Endocrinol Invest 12:53–57
pubmed: 2809098
Lips P, de Jongh RT (2018) Vitamin D deficiency in immigrants. Bone Rep 9:37–41. https://doi.org/10.1016/j.bonr.2018.06.001
doi: 10.1016/j.bonr.2018.06.001
pubmed: 30591925
pmcid: 6303232
Ewert A, Leifheit-Nestler M, Hohenfellner K, Büscher A, Kemper MJ, Oh J, Billing H, Thumfart J, Stangl G, Baur AC, Föller M, Feger M, Weber LT, Acham-Roschitz B, Arbeiter K, Tönshoff B, Zivicnjak M, Haffner D (2020) Bone and mineral metabolism in children with nephropathic cystinosis compared with other CKD entities. J Clin Endocrinol Metab 105:dgaa267. https://doi.org/10.1210/clinem/dgaa267
doi: 10.1210/clinem/dgaa267
pubmed: 32413117
Zivicnjak M, Franke D, Filler G, Haffner D, Froede K, Nissel R, Haase S, Offner G, Ehrich JHH, Querfeld U (2006) Growth impairment shows an age-dependent pattern in boys with chronic kidney disease. Pediatr Nephrol 22:420–429. https://doi.org/10.1007/s00467-006-0345-6
doi: 10.1007/s00467-006-0345-6
pubmed: 17131161
Zivicnjak M, Narancić NS, Szirovicza L, Franke D, Hrenović J, Bisof V (2003) Gender-specific growth patterns for stature, sitting height and limbs length in Croatian children and youth (3 to 18 years of age). Coll Antropol 27:321–334
pubmed: 12974162
Zivicnjak M, Smolej Narancić N, Szirovicza L, Franke D, Hrenović J, Bisof V, Tomas Z, Skarić-Jurić T (2008) Gender-specific growth patterns of transversal body dimensions in Croatian children and youth (2 to 18 years of age). Coll Antropol 32:419–431
pubmed: 18756891
Payne RB, Little AJ, Williams RB, Milner JR (1973) Interpretation of serum calcium in patients with abnormal serum proteins. Br Med J 4:643–646
doi: 10.1136/bmj.4.5893.643
pubmed: 4758544
pmcid: 1587636
De Souza VC, Rabilloud M, Cochat P, Selistre L, Hadj-Aissa A, Kassai B, Ranchin B, Berg U, Herthelius M, Dubourg L (2012) Schwartz formula: is one k-coefficient adequate for all children? PLoS One 7:e53439. https://doi.org/10.1371/journal.pone.0053439
doi: 10.1371/journal.pone.0053439
pubmed: 23285295
pmcid: 3532344
Spackman DH, Stein WH, Moore S (1958) Automatic recording apparatus for use in chromatography of amino acids. Anal Chem 30:1190–1206. https://doi.org/10.1021/ac60139a006
doi: 10.1021/ac60139a006
Linden S, Klank S, Harms E, Grüneberg M, Park JH, Marquardt T (2020) Cystinosis: therapy adherence and metabolic monitoring in patients treated with immediate-release cysteamine. Mol Genet Metab Rep 24:100620. https://doi.org/10.1016/j.ymgmr.2020.100620
doi: 10.1016/j.ymgmr.2020.100620
pubmed: 32685378
pmcid: 7358454
Adeli K, Higgins V, Nieuwesteeg M, Raizman JE, Chen Y, Wong SL, Blais D (2015) Biochemical marker reference values across pediatric, adult, and geriatric ages: establishment of robust pediatric and adult reference intervals on the basis of the Canadian health measures survey. Clin Chem 61:1049–1062. https://doi.org/10.1373/clinchem.2015.240515
doi: 10.1373/clinchem.2015.240515
pubmed: 26044506
KDIGO (2012) Clinical practice guideline for anemia in chronic kidney disease. Kidney Int Suppl 2:288–291
KDOQI (2009) Clinical practice guideline for nutrition in children with CKD: 2008 update executive summary. Am J Kidney Dis 53:11. https://doi.org/10.1053/j.ajkd.2008.11.017
doi: 10.1053/j.ajkd.2008.11.017
de Kieviet W, Slaats EH, Abeling NG (1986) Pediatric reference values for calcium, magnesium and inorganic phosphorus in serum obtained from Bhattacharya plots for data from unselected patients. J Clin Chem Clin Biochem 24:233–242. https://doi.org/10.1515/cclm.1986.24.4.233
doi: 10.1515/cclm.1986.24.4.233
pubmed: 3701274
Voigt M, Schneider KT, Jährig K (1996) Analysis of a 1992 birth sample in Germany. 1: New percentile values of the body weight of newborn infants. Geburtshilfe Frauenheilkd 56:550–558. https://doi.org/10.1055/s-2007-1023283
doi: 10.1055/s-2007-1023283
pubmed: 9036070
Lane PH (2005) Puberty and chronic kidney disease. Adv Chronic Kidney Dis 12:372–377. https://doi.org/10.1053/j.ackd.2005.07.009
doi: 10.1053/j.ackd.2005.07.009
pubmed: 16198276
Gahl WA, Balog JZ, Kleta R (2007) Nephropathic cystinosis in adults: Natural history and effects of oral cysteamine therapy. Ann Intern Med 147:242–250. https://doi.org/10.7326/0003-4819-147-4-200708210-00006
doi: 10.7326/0003-4819-147-4-200708210-00006
pubmed: 17709758
Pascoal LM, de Oliveira Lopes MV, da Silva VM, Beltrão BA, Chaves DBR, Nunes MM, de Castro NB (2016) Prognostic clinical indicators of short-term survival for ineffective breathing pattern in children with acute respiratory infection. J Clin Nurs 25:752–759. https://doi.org/10.1111/jocn.13064
doi: 10.1111/jocn.13064
pubmed: 26708308
Haffner D, Leifheit-Nestler M, Grund A, Schnabel D (2021) Rickets guidance: part I-diagnostic workup. Pediatr Nephrol 37:2013–2036. https://doi.org/10.1007/s00467-021-05328-w
doi: 10.1007/s00467-021-05328-w
pubmed: 34910242
pmcid: 9307538
Aung H, Soe K, Smithuis FF, Lamb T, Aung MW, Smithuis FM (2021) Case report: children with severe nutritional rickets in the naga region in northwest myanmar, on the border with india. Am J Trop Med Hyg 105:217–221. https://doi.org/10.4269/ajtmh.20-1431
doi: 10.4269/ajtmh.20-1431
pubmed: 34097648
pmcid: 8274785
Markello TC, Bernardini IM, Gahl WA (1993) Improved renal function in children with cystinosis treated with cysteamine. N Engl J Med 328:1157–1162. https://doi.org/10.1056/NEJM199304223281604
doi: 10.1056/NEJM199304223281604
pubmed: 8455682
Langman CB (2017) Bone complications of cystinosis. J Pediatr 183:S2–S4. https://doi.org/10.1016/j.jpeds.2016.12.052
doi: 10.1016/j.jpeds.2016.12.052
Battafarano G, Rossi M, Rega LR, Di Giovamberardino G, Pastore A, D’Agostini M, Porzio O, Nevo N, Emma F, Taranta A, Del Fattore A (2019) Intrinsic bone defects in cystinotic mice. Am J Pathol 189:1053–1064. https://doi.org/10.1016/j.ajpath.2019.01.015
doi: 10.1016/j.ajpath.2019.01.015
pubmed: 30794806
Machuca-Gayet I, Quinaux T, Bertholet-Thomas A, Gaillard S, Claramunt-Taberner D, Acquaviva-Bourdain C, Bacchetta J (2020) Bone disease in nephropathic cystinosis: beyond renal osteodystrophy. Int J Mol Sci 21:3109. https://doi.org/10.3390/ijms21093109
doi: 10.3390/ijms21093109
pubmed: 32354056
pmcid: 7246679
Openshaw P, Edwards S, Helms P (1984) Changes in rib cage geometry during childhood. Thorax 39:624–627. https://doi.org/10.1136/thx.39.8.624
doi: 10.1136/thx.39.8.624
pubmed: 6474391
pmcid: 1020518
Hohenfellner K, Rauch F, Ariceta G, Awan A, Bacchetta J, Bergmann C, Bechtold S, Cassidy N, Deschenes G, Elenberg E, Gahl WA, Greil O, Harms E, Herzig N, Hoppe B, Koeppl C, Lewis MA, Levtchenko E, Nesterova G, Santos F, Schlingmann KP, Servais A, Soliman NA, Steidle G, Sweeney C, Treikauskas U, Topaloglu R, Tsygin A, Veys K, Vigier V, R, Zustin J, Haffner D, (2019) Management of bone disease in cystinosis: statement from an international conference. J Inherit Metab Dis 42:1019–1029. https://doi.org/10.1002/jimd.12134
doi: 10.1002/jimd.12134
pubmed: 31177550
pmcid: 7379238
Agarwal A, Gulati D, Rath S, Walia M (2009) Rickets: a cause of delayed walking in toddlers. Indian J Pediatr 76:269–272. https://doi.org/10.1007/s12098-009-0052-y
doi: 10.1007/s12098-009-0052-y
pubmed: 19347666
Sahni SS, Kakkar S, Kumar R, Goraya JS (2021) Osteomalacic myopathy in children and adolescents with vitamin-D deficiency. Neurol India 69:1650–1654. https://doi.org/10.4103/0028-3886.333492
doi: 10.4103/0028-3886.333492
pubmed: 34979664
Linglart A, Biosse-Duplan M, Briot K, Chaussain C, Esterle L, Guillaume-Czitrom S, Kamenicky P, Nevoux J, Prié D, Rothenbuhler A, Wicart P, Harvengt P (2014) Therapeutic management of hypophosphatemic rickets from infancy to adulthood. Endocr Connect 3:13. https://doi.org/10.1530/EC-13-0103
doi: 10.1530/EC-13-0103
Hershenson MB, Colin AA, Wohl ME, Stark AR (1990) Changes in the contribution of the rib cage to tidal breathing during infancy. Am Rev Respir Dis 141:922–925. https://doi.org/10.1164/ajrccm/141.4_Pt_1.922
doi: 10.1164/ajrccm/141.4_Pt_1.922
pubmed: 2139308
Gahl WA, Thoene JG, Schneider JA (2002) Cystinosis. N Engl J Med 347:111–121. https://doi.org/10.1056/NEJMra020552
doi: 10.1056/NEJMra020552
pubmed: 12110740
Gultekingil Keser A, Topaloglu R, Bilginer Y, Besbas N (2014) Long-term endocrinologic complications of cystinosis. Minerva Pediatr 66:123–130
pubmed: 24835445
Kasimer RN, Langman CB (2021) Adult complications of nephropathic cystinosis: a systematic review. Pediatr Nephrol 36:223–236. https://doi.org/10.1007/s00467-020-04487-6
doi: 10.1007/s00467-020-04487-6
pubmed: 32016627
Schiaffino S, Mammucari C (2011) Regulation of skeletal muscle growth by the IGF1-akt/PKB pathway: Insights from genetic models. Skelet Muscle 1:4. https://doi.org/10.1186/2044-5040-1-4
doi: 10.1186/2044-5040-1-4
pubmed: 21798082
pmcid: 3143906
Ohlsson C, Bengtsson BA, Isaksson OG, Andreassen TT, Slootweg MC (1998) Growth hormone and bone. Endocr Rev 19:55–79. https://doi.org/10.1210/edrv.19.1.0324
doi: 10.1210/edrv.19.1.0324
pubmed: 9494780
Low LC, Tam SY, Kwan EY, Tsang AM, Karlberg J (2001) Onset of significant GH dependence of serum IGF-I and IGF-binding protein 3 concentrations in early life. Pediatr Res 50:737–742. https://doi.org/10.1203/00006450-200112000-00018
doi: 10.1203/00006450-200112000-00018
pubmed: 11726733
Hochberg Z (2009) Evo-devo of child growth II: human life history and transition between its phases. Eur J Endocrinol 160:135–141. https://doi.org/10.1530/EJE-08-0445
doi: 10.1530/EJE-08-0445
pubmed: 19022913
Ong GSY, Walsh JP, Stuckey BGA, Brown SJ, Rossi E, Ng JL, Nguyen HH, Kent GN, Lim EM (2012) The importance of measuring ionized calcium in characterizing calcium status and diagnosing primary hyperparathyroidism. J Clin Endocrinol Metab 97:3138–3145. https://doi.org/10.1210/jc.2012-1429
doi: 10.1210/jc.2012-1429
pubmed: 22745247
Minisola S, Pepe J, Cipriani C (2021) Measuring serum calcium: total, albumin-adjusted or ionized? Clin Endocrinol (Oxf) 95:267–268. https://doi.org/10.1111/cen.14362
doi: 10.1111/cen.14362
pubmed: 33190303
Santos F, Díaz-Anadón L, Ordóñez FA, Haffner D (2021) Bone disease in CKD in children. Calcif Tissue Int 108:423–438. https://doi.org/10.1007/s00223-020-00787-z
doi: 10.1007/s00223-020-00787-z
pubmed: 33452890