Polyvinylpyrrolidone-coated catheters decrease choroid plexus adhesion and improve flow/pressure performance in an in vitro model of hydrocephalus.

BioGlide catheter Hydrocephalus Proximal catheter malfunction

Journal

Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery
ISSN: 1433-0350
Titre abrégé: Childs Nerv Syst
Pays: Germany
ID NLM: 8503227

Informations de publication

Date de publication:
07 Jul 2023
Historique:
received: 07 06 2023
accepted: 23 06 2023
medline: 7 7 2023
pubmed: 7 7 2023
entrez: 7 7 2023
Statut: aheadofprint

Résumé

Proximal catheter obstruction is the leading cause of ventricular shunt failure in pediatric patients. Our aim is to evaluate various types of shunt catheters to assess in vitro cellular adhesion and obstruction. Four catheter types were tested: (1) antibiotic and impregnated, (2) barium-stripe polyvinylpyrrolidone coated (PVP), (3) barium-stripe, and (4) barium-impregnated. Catheters were seeded with choroid plexus epithelial cells to test cellular adhesion and inoculated with the same cells to test flow/pressure performance under choroid plexus growth conditions. Ventricular catheters were placed into a three-dimensional printed phantom ventricular replicating system through which artificial cerebrospinal fluid (CSF) was pumped. Differential pressure sensors were used to measure catheter performance. PVP catheters had the lowest median cell attachment (10 cells) compared to antibiotic-impregnated (230 cells), barium stripe (513 cells), and barium-impregnated (146 cells) catheters after culture (p < 0.01). In addition, PVP catheters (- 0.247 cm H PVP catheters showed less cellular adhesion and, together with antibiotic-impregnated catheters, required less differential pressure to maintain a consistent flow. Our findings suggest clinical relevance for using PVP ventricular catheters in patients with recurrent catheter obstruction by choroid plexus.

Identifiants

pubmed: 37417983
doi: 10.1007/s00381-023-06058-0
pii: 10.1007/s00381-023-06058-0
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : NINDS NIH HHS
ID : 1R21NS128707-01A1
Pays : United States
Organisme : NINDS NIH HHS
ID : 1R21NS128707-01A1
Pays : United States
Organisme : NINDS NIH HHS
ID : 1R21NS128707-01A1
Pays : United States
Organisme : NINDS NIH HHS
ID : 1R21NS128707-01A1
Pays : United States

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Isaacs AM, Riva-Cambrin J, Yavin D, Hockley A, Pringsheim TM, Jette N, Lethebe BC, Lowerison M, Dronyk J, Hamilton MG (2018) Age-specific global epidemiology of hydrocephalus: systematic review, metanalysis and global birth surveillance. PLoS ONE 13(10):e0204926
doi: 10.1371/journal.pone.0204926 pubmed: 30273390 pmcid: 6166961
Del Bigio MR (2010) Neuropathology and structural changes in hydrocephalus. Dev Disabil Res Rev 16(1):16–22
doi: 10.1002/ddrr.94 pubmed: 20419767
Rekate HL (2009) A contemporary definition and classification of hydrocephalus. Semin Pediatr Neurol 16(1):9–15
doi: 10.1016/j.spen.2009.01.002 pubmed: 19410151
Castaneyra-Ruiz L, Gonzalez-Marrero I, Hernandez-Abad LG, Carmona-Calero EM, Pardo MR, Baz-Davila R, Lee S, Muhonen M, Borges R, Castaneyra-Perdomo A (2022) AQP4 labels a subpopulation of white matter-dependent glial radial cells affected by pediatric hydrocephalus, and its expression increased in glial microvesicles released to the cerebrospinal fluid in obstructive hydrocephalus. Acta Neuropathol Commun 10(1):41
doi: 10.1186/s40478-022-01345-4 pubmed: 35346374 pmcid: 8962176
Castaneyra-Ruiz L, Gonzalez-Marrero I, Hernandez-Abad LG, Lee S, Castaneyra-Perdomo A, Muhonen M (2022) “AQP4, astrogenesis, and hydrocephalus: a new neurological perspective.” Int J Mol Sci 23(18)
Garcia-Bonilla M, Nair A, Moore J, Castaneyra-Ruiz L, Zwick SH, Dilger RN, Fleming SA, Golden RK, Talcott MR, Isaacs AM, Limbrick DD Jr, McAllister JP 2nd (2023) Impaired neurogenesis with reactive astrocytosis in the hippocampus in a porcine model of acquired hydrocephalus. Exp Neurol 363:114354
doi: 10.1016/j.expneurol.2023.114354 pubmed: 36822393
Guerra MM, Henzi R, Ortloff A, Lichtin N, Vio K, Jimenez AJ, Dominguez-Pinos MD, Gonzalez C, Jara MC, Hinostroza F, Rodriguez S, Jara M, Ortega E, Guerra F, Sival DA, den Dunnen WF, Perez-Figares JM, McAllister JP, Johanson CE, Rodriguez EM (2015) Cell junction pathology of neural stem cells is associated with ventricular zone disruption, hydrocephalus, and abnormal neurogenesis. J Neuropathol Exp Neurol 74(7):653–671
doi: 10.1097/NEN.0000000000000203 pubmed: 26079447
Isaacs A M, Neil JJ, McAllister JP, Dahiya S, Castaneyra-Ruiz L, Merisaari H, Botteron HE, Alexopoulous D, George A, Peng S, Morales DM, Shimony J, Strahle J, Yan Y, Song SK, Limbrick  DD, Smyser C (2021) “Microstructural periventricular white matter injury in post-hemorrhagic ventricular dilatation.” Neurology
McAllister JP, Guerra MM, Ruiz LC, Jimenez AJ, Dominguez-Pinos D, Sival D, den Dunnen W, Morales DM, Schmidt RE, Rodriguez EM, Limbrick DD (2017) Ventricular zone disruption in human neonates with intraventricular hemorrhage. J Neuropathol Exp Neurol 76(5):358–375
doi: 10.1093/jnen/nlx017 pubmed: 28521038 pmcid: 6251528
Galarza M, Gimenez A, Amigo JM, Schuhmann M, Gazzeri R, Thomale U, McAllister JP 2nd (2018) Next generation of ventricular catheters for hydrocephalus based on parametric designs. Childs Nerv Syst 34(2):267–276
doi: 10.1007/s00381-017-3565-0 pubmed: 28812141
Kulkarni AV, Riva-Cambrin J, Butler J, Browd SR, Drake JM, Holubkov R, Kestle JR, Limbrick DD, Simon TD, Tamber MS, Wellons 3rd JC, Whitehead WE, Hydrocephalus Clinical Research N (2013) Outcomes of CSF shunting in children: comparison of Hydrocephalus Clinical Research Network cohort with historical controls: clinical article. J Neurosurg Pediatr 12(4):334–338
Wright Z, Larrew TW, Eskandari R (2016) Pediatric hydrocephalus: current state of diagnosis and treatment. Pediatr Rev 37(11):478–490
doi: 10.1542/pir.2015-0134 pubmed: 27803144
Sainte-Rose C, Piatt JH, Renier D, Pierre-Kahn A, Hirsch JF, Hoffman HJ, Humphreys RP, Hendrick EB (1991) Mechanical complications in shunts. Pediatr Neurosurg 17(1):2–9
doi: 10.1159/000120557 pubmed: 1811706
Stone JJ, Walker CT, Jacobson M, Phillips V, Silberstein HJ (2013) Revision rate of pediatric ventriculoperitoneal shunts after 15 years. J Neurosurg Pediatr 11(1):15–19
doi: 10.3171/2012.9.PEDS1298 pubmed: 23101557
Hanak BW, Ross EF, Harris CA, Browd SR, Shain W (2016) Toward a better understanding of the cellular basis for cerebrospinal fluid shunt obstruction: report on the construction of a bank of explanted hydrocephalus devices. J Neurosurg Pediatr 18(2):213–223
doi: 10.3171/2016.2.PEDS15531 pubmed: 27035548 pmcid: 5915300
Hariharan P, Sondheimer J, Petroj A, Gluski J, Jea A, Whitehead WE, Sood S, Ham SD, Rocque BG, Marupudi NI, McAllister JP 2nd, Limbrick D, Del Bigio MR, Harris CA (2021) A multicenter retrospective study of heterogeneous tissue aggregates obstructing ventricular catheters explanted from patients with hydrocephalus. Fluids Barriers CNS 18(1):33
doi: 10.1186/s12987-021-00262-3 pubmed: 34289858 pmcid: 8293524
Mao G, Agarwal N, Zuccoli G, Tyler-Kabara EC (2017) Intermittent entrapment of choroid plexus in ventricular catheter. Interdisciplinary Neurosurgery 9:17–19
doi: 10.1016/j.inat.2016.07.006
Hanak BW, Hsieh CY, Donaldson W, Browd SR, Lau KKS, Shain W (2018) Reduced cell attachment to poly(2-hydroxyethyl methacrylate)-coated ventricular catheters in vitro. J Biomed Mater Res B Appl Biomater 106(3):1268–1279
doi: 10.1002/jbm.b.33915 pubmed: 28631360
Castaneyra-Ruiz L, Lee S, Chan AY, Shah V, Romero B, Ledbetter J, Muhonen M (2022) “Polyvinylpyrrolidone-coated catheters decrease astrocyte adhesion and improve flow/pressure performance in an invitro model of hydrocephalus.” Children (Basel) 10(1)
Lee S, Vinzani M, Romero B, Chan AY, Castañeyra-Ruiz L, Muhonen M (2022) Partial obstruction of ventricular catheters affects performance in a new catheter obstruction model of hydrocephalus. Children 9(10):1453
doi: 10.3390/children9101453 pubmed: 36291388 pmcid: 9601154
Lee S, Bristol RE, Preul MC, Chae J (2020) Three-dimensionally printed microelectromechanical-system hydrogel valve for communicating hydrocephalus. ACS Sens 5(5):1398–1404
doi: 10.1021/acssensors.0c00181 pubmed: 32141291
Castaneyra-Ruiz L, McAllister JP 2nd, Morales DM, Brody SL, Isaacs AM, Limbrick DD Jr (2020) Preterm intraventricular hemorrhage in vitro: modeling the cytopathology of the ventricular zone. Fluids Barriers CNS 17(1):46
doi: 10.1186/s12987-020-00210-7 pubmed: 32690048 pmcid: 7372876
Castaneyra-Ruiz L, Morales DM, McAllister JP, Brody SL, Isaacs AM, Strahle JM, Dahiya SM, Limbrick DD (2018) Blood exposure causes ventricular zone disruption and glial activation in vitro. J Neuropathol Exp Neurol 77(9):803–813
doi: 10.1093/jnen/nly058 pubmed: 30032242 pmcid: 6927874
Castaneyra-Ruiz L, Hernandez-Abad LG, Carmona-Calero EM, Castaneyra-Perdomo A, Gonzalez-Marrero I (2019) AQP1 overexpression in the CSF of obstructive hydrocephalus and inversion of its polarity in the choroid plexus of a chiari malformation type II case. J Neuropathol Exp Neurol 78(7):641–647
doi: 10.1093/jnen/nlz033 pubmed: 31039249
Karimy JK, Zhang J, Kurland DB, Theriault BC, Duran D, Stokum JA, Furey CG, Zhou X, Mansuri MS, Montejo J (2017) Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nat Med 23(8):997–1003
doi: 10.1038/nm.4361 pubmed: 28692063
Harris CA, McAllister JP (2012) What we should know about the cellular and tissue response causing catheter obstruction in the treatment of hydrocephalus. Neurosurgery 70(6):1589–1602
doi: 10.1227/NEU.0b013e318244695f pubmed: 22157548
Cagavi F, Akalan N, Celik H, Gur D, Guciz B (2004) “Effect of hydrophilic coating on microorganism colonization in silicone tubing.” Acta Neurochir (Wien) 146(6): 603–610; discussion 609–610
Chen H-H, Riva-Cambrin J, Brockmeyer DL, Walker ML, Kestle JR (2011) Shunt failure due to intracranial migration of BioGlide ventricular catheters. J Neurosurg Pediatr 7(4):408–412
doi: 10.3171/2011.1.PEDS10389 pubmed: 21456914
Limbrick Jr DD, Leonard JR (2018) Cerebrospinal fluid disorders: lifelong implications, Springer

Auteurs

Seunghyun Lee (S)

CHOC Children's Research Institute, CHOC Neuroscience Institute, 1201 W. La Veta Avenue, Orange, CA, 92868, USA.

Jenna Ledbetter (J)

CHOC Children's Research Institute, CHOC Neuroscience Institute, 1201 W. La Veta Avenue, Orange, CA, 92868, USA.

Jordan Davies (J)

University of California, CA, Irvine, Orange, CA 92868 USA, USA.

Bianca Romero (B)

Neurosurgery Department, CHOC Children's Hospital, 505 S Main St., Orange, CA, 92868, USA.

Michael Muhonen (M)

Neurosurgery Department, CHOC Children's Hospital, 505 S Main St., Orange, CA, 92868, USA.

Leandro Castaneyra-Ruiz (L)

CHOC Children's Research Institute, CHOC Neuroscience Institute, 1201 W. La Veta Avenue, Orange, CA, 92868, USA. Leandro.Castaneyra.Ruiz@choc.org.

Classifications MeSH