The effect of hesperetin on estrogen receptor gene expression and its relationship with the downstream pathways of estrogen receptor alpha.
Cyclin D1
ERα
ERβ
Hesperetin
IL-6
MCF-7
pS2
Journal
Molecular biology reports
ISSN: 1573-4978
Titre abrégé: Mol Biol Rep
Pays: Netherlands
ID NLM: 0403234
Informations de publication
Date de publication:
Sep 2023
Sep 2023
Historique:
received:
15
03
2023
accepted:
21
06
2023
medline:
29
8
2023
pubmed:
7
7
2023
entrez:
7
7
2023
Statut:
ppublish
Résumé
Estrogen receptor (ER) is a transcription factor that affects the expression of some genes involved in the progression and development of breast cancer (BC). Hesperetin (Hst) is a flavonoid that inhibits the proliferation of BC cells. In this study, we investigated the effect of Hst on the cell viability of MCF-7 cells and the gene expression of the ERα, ERβ, IL-6, Ps2, and Cyclin D1. In this study, cell viability was determined by MTT assay. The cells were seeded in RPMI-1640 medium and then exposed to different concentrations of Hst (0, 25, 50, 100, 200, and 400 µM) for 24 h, and IC50 was calculated. Real-time PCR was used to assess the expression of ERα, ERβ, pS2, Cyclin D1, and IL-6 mRNA. MCF-7 cells were seeded in RPMI-1640 medium and then exposed to different concentrations of Hst (0, 25, 50, 100, and 200 µM) for 24 h. Real-time PCR was carried out using a Step One Real-Time PCR System (ABI, USA) and Amplicon SYBR Green reagents. The MTT assay revealed increased cytotoxicity with higher concentrations of Hst, and the IC The results of our study demonstrate that Hst has the ability to induce cell death in MCF-7 cells. Furthermore, it was observed that Hst reduces the expression of the ER gene and enhances its activity, which can affect the downstream pathways of the ER.
Sections du résumé
BACKGROUND
BACKGROUND
Estrogen receptor (ER) is a transcription factor that affects the expression of some genes involved in the progression and development of breast cancer (BC). Hesperetin (Hst) is a flavonoid that inhibits the proliferation of BC cells. In this study, we investigated the effect of Hst on the cell viability of MCF-7 cells and the gene expression of the ERα, ERβ, IL-6, Ps2, and Cyclin D1.
METHODS
METHODS
In this study, cell viability was determined by MTT assay. The cells were seeded in RPMI-1640 medium and then exposed to different concentrations of Hst (0, 25, 50, 100, 200, and 400 µM) for 24 h, and IC50 was calculated. Real-time PCR was used to assess the expression of ERα, ERβ, pS2, Cyclin D1, and IL-6 mRNA. MCF-7 cells were seeded in RPMI-1640 medium and then exposed to different concentrations of Hst (0, 25, 50, 100, and 200 µM) for 24 h. Real-time PCR was carried out using a Step One Real-Time PCR System (ABI, USA) and Amplicon SYBR Green reagents.
RESULTS
RESULTS
The MTT assay revealed increased cytotoxicity with higher concentrations of Hst, and the IC
CONCLUSIONS
CONCLUSIONS
The results of our study demonstrate that Hst has the ability to induce cell death in MCF-7 cells. Furthermore, it was observed that Hst reduces the expression of the ER gene and enhances its activity, which can affect the downstream pathways of the ER.
Identifiants
pubmed: 37418087
doi: 10.1007/s11033-023-08616-w
pii: 10.1007/s11033-023-08616-w
doi:
Substances chimiques
Estrogen Receptor alpha
0
Receptors, Estrogen
0
Estrogen Receptor beta
0
Cyclin D1
136601-57-5
hesperetin
Q9Q3D557F1
Interleukin-6
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
7225-7236Subventions
Organisme : Birjand University of Medical Sciences
ID : 456524
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Thomssen C, Balic M, Harbeck N, Gnant M (2021) St. Gallen/Vienna 2021: a brief summary of the consensus discussion on customizing therapies for women with early breast cancer. Breast Care. https://doi.org/10.1159/000516114
doi: 10.1159/000516114
pubmed: 35082572
pmcid: 8740062
Vuong D, Simpson PT, Green B, Cummings MC, Lakhani SR (2014) Molecular classification of breast cancer. Virchows Arch. https://doi.org/10.1007/s00428-014-1593-7
doi: 10.1007/s00428-014-1593-7
pubmed: 24878755
Iorga A, Cunningham CM, Moazeni S, Ruffenach G, Umar S, Eghbali M (2017) The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy. Biol Sex Differ. https://doi.org/10.1186/s13293-017-0152-8
doi: 10.1186/s13293-017-0152-8
pubmed: 29065927
pmcid: 5655818
Jia M, Dahlman-Wright K, Gustafsson J-Ã (2015) Estrogen receptor alpha and beta in health and disease. Best Pract Res Clin Endocrinol Metab. https://doi.org/10.1016/j.beem.2015.04.008
doi: 10.1016/j.beem.2015.04.008
pubmed: 26303083
Tecalco-Cruz AC, Ramírez-Jarquín JO (2017) Mechanisms that increase stability of estrogen receptor alpha in breast cancer. Clin Breast Cancer. https://doi.org/10.1016/j.clbc.2016.07.015
doi: 10.1016/j.clbc.2016.07.015
pubmed: 27561704
Anbalagan M, Rowan BG (2015) Estrogen receptor alpha phosphorylation and its functional impact in human breast cancer. Mol Cell Endocrinol. https://doi.org/10.1016/j.mce.2015.01.016
doi: 10.1016/j.mce.2015.01.016
pubmed: 25597633
Treeck O, Juhasz-Boess I, Lattrich C, Horn F, Goerse R, Ortmann O (2008) Effects of exon-deleted estrogen receptor β transcript variants on growth, apoptosis and gene expression of human breast cancer cell lines. Breast Cancer Res Treat. https://doi.org/10.1007/s10549-007-9749-7
doi: 10.1007/s10549-007-9749-7
pubmed: 17876701
Marino M, Galluzzo P, Ascenzi P (2006) Estrogen signaling multiple pathways to impact gene transcription. Curr Genom. https://doi.org/10.2174/138920206779315737
doi: 10.2174/138920206779315737
Crombach G, Ingenhorst A, Göhring UJ, Scharl A, Neuhaus W, Möbus V, Schaeffer HJ (1993) Expression of pS2 protein in breast cancer. Arch Gynecol Obstet. https://doi.org/10.1007/bf02766644
doi: 10.1007/bf02766644
pubmed: 8161252
Landberg G, Roos G (1997) The cell cycle in breast cancer. Apmis. https://doi.org/10.1111/j.1699-0463.1997.tb05056.x
doi: 10.1111/j.1699-0463.1997.tb05056.x
pubmed: 9298094
Casimiro MC, Velasco-Velázquez M, Aguirre-Alvarado C, Pestell RG (2014) Overview of cyclins D1 function in cancer and the CDK inhibitor landscape: past and present. Expert Opin Investig Drugs. https://doi.org/10.1517/13543784.2014.867017
doi: 10.1517/13543784.2014.867017
pubmed: 24387133
Erlund I (2004) Review of the flavonoids quercetin, hesperetin, and naringenin. dietary sources, bioactivities, bioavailability, and epidemiology. Nutr Res. https://doi.org/10.1016/j.nutres.2004.07.005
doi: 10.1016/j.nutres.2004.07.005
Nijveldt RJ, Van Nood E, Van Hoorn DE, Boelens PG, Van Norren K, Van Leeuwen PA (2001) Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr. https://doi.org/10.1093/ajcn/74.4.418
doi: 10.1093/ajcn/74.4.418
pubmed: 11566638
Kim GD (2014) Hesperetin inhibits vascular formation by suppressing of the PI3K/AKT, ERK, and p38 MAPK signaling pathways. Prev Nutr Food Sci. https://doi.org/10.3746/pnf.2014.19.4.299
doi: 10.3746/pnf.2014.19.4.299
pubmed: 25580403
pmcid: 4287331
Choi EJ (2007) Hesperetin induced G1-phase cell cycle arrest in human breast cancer MCF-7 cells: involvement of CDK4 and p21. Nutr Cancer. https://doi.org/10.1080/01635580701419030
doi: 10.1080/01635580701419030
pubmed: 18001213
Jeong H-J, Shin YG, Kim I-H, Pezzuto JM (1999) Inhibition of aromatase activity by flavonoids. Arch Pharm Res. https://doi.org/10.1007/BF02976369
doi: 10.1007/BF02976369
pubmed: 10615871
So FV, Guthrie N, Chambers AF, Carroll KK (1997) Inhibition of proliferation of estrogen receptor-positive MCF-7 human breast cancer cells by flavonoids in the presence and absence of excess estrogen. Cancer Lett. https://doi.org/10.1016/s0304-3835(96)04557-0
doi: 10.1016/s0304-3835(96)04557-0
pubmed: 9066718
Flaherty KT (2006) Chemotherapy and targeted therapy combinations in advanced melanoma. Clin Cancer Res. https://doi.org/10.1158/1078-0432.Ccr-05-2505
doi: 10.1158/1078-0432.Ccr-05-2505
pubmed: 16778114
pmcid: 1839847
Langer SW (2014) Dexrazoxane for the treatment of chemotherapy-related side effects. Cancer Manag Res. https://doi.org/10.2147/cmar.S47238
doi: 10.2147/cmar.S47238
pubmed: 25246808
pmcid: 4168851
Tekin G, Ozturk BR (2017) Effects of quercetin and hesperetin on MCF-7 cell proliferation by using real-time cell analyzer. J Basic Clin Pharm 8:121–126
Palit S, Kar S, Sharma G, Das PK (2015) Hesperetin Induces apoptosis in breast carcinoma by triggering accumulation of ROS and activation of ASK1/JNK pathway. J Cell Physiol. https://doi.org/10.1002/jcp.24818
doi: 10.1002/jcp.24818
pubmed: 25204891
Abusoglu G, Ozturk B (2020) Effect of static magnetic field with quercetin and hesperetin on MCF-7 and MDA MB-231 breast cancer cells. Turk J Biochem 45:833–841
doi: 10.1515/tjb-2019-0528
Nurhayati IP, Khumaira A, Ilmawati GPN, Meiyanto E, Hermawan ACytotoxic (2020) Antimetastatic activity of hesperetin and doxorubicin combination toward Her2 expressing breast cancer cells. Asian Pac J Cancer Prev. https://doi.org/10.31557/apjcp.2020.21.5.1259
doi: 10.31557/apjcp.2020.21.5.1259
pubmed: 32458631
pmcid: 7541862
Rahideh ST, Shidfar F, Nourbakhsh M, Hoseini M, Koohdani F, Entezam M, Keramatipour M (2016) The individual or combinational effects of hesperetin and letrozole on the activity and expression of aromatase in MCF-7 cells. Cell Mol Biol (Noisy-le-grand) 62:38–43
pubmed: 27262800
Pearce ST, Jordan VC (2004) The biological role of estrogen receptors alpha and beta in cancer. Crit Rev Oncol Hematol. https://doi.org/10.1016/j.critrevonc.2003.09.003
doi: 10.1016/j.critrevonc.2003.09.003
pubmed: 15094156
Cowley SM, Hoare S, Mosselman S, Parker MG (1997) Estrogen receptors alpha and beta form heterodimers on DNA. J Biol Chem. https://doi.org/10.1074/jbc.272.32.19858
doi: 10.1074/jbc.272.32.19858
pubmed: 9242648
Pettersson K, Grandien K, Kuiper GG, Gustafsson JA (1997) Mouse estrogen receptor beta forms estrogen response element-binding heterodimers with estrogen receptor alpha. Mol Endocrinol. https://doi.org/10.1210/mend.11.10.9989
doi: 10.1210/mend.11.10.9989
pubmed: 9280064
Hua H, Zhang H, Kong Q, Jiang Y (2018) Mechanisms for estrogen receptor expression in human cancer. Exp Hematol Oncol. https://doi.org/10.1186/s40164-018-0116-7
doi: 10.1186/s40164-018-0116-7
pubmed: 30250760
pmcid: 6148803
Lee WJ, Shim JY, Zhu BT (2005) Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol. https://doi.org/10.1124/mol.104.008367
doi: 10.1124/mol.104.008367
pubmed: 16368894
Guttilla IK, Adams BD, White BA (2012) ERα, microRNAs, and the epithelial-mesenchymal transition in breast cancer. Trends Endocrinol Metab. https://doi.org/10.1016/j.tem.2011.12.001
doi: 10.1016/j.tem.2011.12.001
pubmed: 22257677
Al-Nakhle H, Burns PA, Cummings M, Hanby AM, Hughes TA, Satheesha S, Speirs V (2010) Estrogen receptor {beta}1 expression is regulated by miR-92 in breast cancer. Cancer Res. https://doi.org/10.1158/0008-5472.Can-09-4104
doi: 10.1158/0008-5472.Can-09-4104
pubmed: 20484043
pmcid: 2883739
Susidarti RA, Nugroho AE, Meiyanto E (2014) Increasing sensitivity of MCF-7/DOX cells towards doxorubicin by hesperetin through suppression of P-glycoprotein expression. Indones J Pharm 25:84
doi: 10.14499/indonesianjpharm25iss2pp84
Zwergel C, Valente S, Mai ADNA (2016) Methyltransferases inhibitors from natural sources. Curr Top Med Chem. https://doi.org/10.2174/1568026615666150825141505
doi: 10.2174/1568026615666150825141505
pubmed: 26303417
Tejada S, Pinya S, Martorell M, Capó X, Tur JA, Pons A, Sureda A (2018) Potential anti-inflammatory effects of hesperidin from the genus citrus. Curr Med Chem. https://doi.org/10.2174/0929867324666170718104412
doi: 10.2174/0929867324666170718104412
pubmed: 28721824
Galien R, Garcia T (1997) Estrogen receptor impairs interleukin-6 expression by preventing protein binding on the NF-kappaB site. Nucleic Acids Res. https://doi.org/10.1093/nar/25.12.2424
doi: 10.1093/nar/25.12.2424
pubmed: 9171095
pmcid: 146754
Ray A, Prefontaine KE, Ray P (1994) Down-modulation of interleukin-6 gene expression by 17 beta-estradiol in the absence of high affinity DNA binding by the estrogen receptor. J Biol Chem 269:12940–12946
doi: 10.1016/S0021-9258(18)99966-7
pubmed: 8175711
Jo SH, Kim ME, Cho JH, Lee Y, Lee J, Park YD, Lee JS (2019) Hesperetin inhibits neuroinflammation on microglia by suppressing inflammatory cytokines and MAPK pathways. Arch Pharm Res. https://doi.org/10.1007/s12272-019-01174-5
doi: 10.1007/s12272-019-01174-5
pubmed: 31327152
Lin Z, Fu C, Yan Z, Wu Y, Zhan J, Lou Z, Pan J (2020) The protective effect of hesperetin in osteoarthritis: an in vitro and in vivo study. Food Funct. https://doi.org/10.1039/c9fo02552a
doi: 10.1039/c9fo02552a
pubmed: 33325949
Elhennawy MG, Abdelaleem EA, Zaki AA, Mohamed WR (2021) Cinnamaldehyde and hesperetin attenuate TNBS-induced ulcerative colitis in rats through modulation of the JAk2/STAT3/SOCS3 pathway. J Biochem Mol Toxicol. https://doi.org/10.1002/jbt.22730
doi: 10.1002/jbt.22730
pubmed: 33522063
Shirzad M, Heidarian E, Beshkar P, Gholami-Arjenaki M (2017) Biological effects of hesperetin on interleukin-6/phosphorylated signal transducer and activator of transcription 3 pathway signaling in prostate cancer PC3 cells. Pharmacogn Res. https://doi.org/10.4103/0974-8490.204655
doi: 10.4103/0974-8490.204655
Stack G, Kumar V, Green S, Ponglikitmongkol M, Berry M, Rio MC et al (1988) Structure and function of the pS2 gene and estrogen receptor in human breast cancer cells. Cancer Treat Res. https://doi.org/10.1007/978-1-4613-1733-3_8
doi: 10.1007/978-1-4613-1733-3_8
pubmed: 2908650
van Meeuwen JA, Korthagen N, de Jong PC, Piersma AH, van den Berg M (2007) (Anti)estrogenic effects of phytochemicals on human primary mammary fibroblasts, MCF-7 cells and their co-culture. Toxicol Appl Pharmacol. https://doi.org/10.1016/j.taap.2007.03.016
doi: 10.1016/j.taap.2007.03.016
pubmed: 18201740
Lannigan DA (2003) Estrogen receptor phosphorylation. Steroids. https://doi.org/10.1016/s0039-128x(02)00110-1
doi: 10.1016/s0039-128x(02)00110-1
pubmed: 12475718
de Leeuw R, Neefjes J, Michalides R (2011) A role for estrogen receptor phosphorylation in the resistance to tamoxifen. Int J Breast Cancer. https://doi.org/10.4061/2011/232435
doi: 10.4061/2011/232435
pubmed: 22295213
pmcid: 3262574
Rio MC, Chambon PThe (1990) pS2 gene, mRNA, and protein: a potential marker for human breast cancer. Cancer Cells 2:269–274
pubmed: 2223388
Li F, Ye L, Lin SM, Leung LK (2011) Dietary flavones and flavonones display differential effects on aromatase (CYP19) transcription in the breast cancer cells MCF-7. Mol Cell Endocrinol. https://doi.org/10.1016/j.mce.2011.06.024
doi: 10.1016/j.mce.2011.06.024
pubmed: 22040602
pmcid: 3508734
Ye L, Chan FL, Chen S, Leung LK (2012) The citrus flavonone hesperetin inhibits growth of aromatase-expressing MCF-7 tumor in ovariectomized athymic mice. J Nutr Biochem. https://doi.org/10.1016/j.jnutbio.2011.07.003
doi: 10.1016/j.jnutbio.2011.07.003
pubmed: 23266284
Shen K, Xie J, Wang H, Zhang H, Yu M, Lu F, Xu H (2015) Cambogin induces caspase-independent apoptosis through the ROS/JNK pathway and epigenetic regulation in breast Cancer cells. Mol Cancer Ther. https://doi.org/10.1158/1535-7163.Mct-14-1048
doi: 10.1158/1535-7163.Mct-14-1048
pubmed: 26712117
Lee KH, Yeh MH, Kao ST, Hung CM, Liu CJ, Huang YY, Yeh CC (2010) The inhibitory effect of hesperidin on tumor cell invasiveness occurs via suppression of activator protein 1 and nuclear factor-kappab in human hepatocellular carcinoma cells. Toxicol Lett. https://doi.org/10.1016/j.toxlet.2010.01.021
doi: 10.1016/j.toxlet.2010.01.021
pubmed: 21182908
Cross MJ, Claesson-Welsh L (2001) FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci. https://doi.org/10.1016/s0165-6147(00)01676-x
doi: 10.1016/s0165-6147(00)01676-x
pubmed: 11282421
Barnes DM, Gillett CE (1998) Cyclin D1 in breast cancer. Breast Cancer Res Treat. https://doi.org/10.1023/a:1006103831990
doi: 10.1023/a:1006103831990
pubmed: 10066068
Hui R, Cornish AL, McClelland RA, Robertson JF, Blamey RW, Musgrove EA, Sutherland RL (1996) Cyclin D1 and estrogen receptor messenger RNA levels are positively correlated in primary breast cancer. Clin Cancer Res 2:923–928
pubmed: 9816251
Castro-Rivera E, Samudio I, Safe S (2001) Estrogen regulation of cyclin D1 gene expression in ZR-75 breast cancer cells involves multiple enhancer elements. J Biol Chem. https://doi.org/10.1074/jbc.M103339200
doi: 10.1074/jbc.M103339200
pubmed: 11410592
Liu L, Xu DM, Cheng YY (2008) Distinct effects of naringenin and hesperetin on nitric oxide production from endothelial cells. J Agric Food Chem. https://doi.org/10.1021/jf0723007
doi: 10.1021/jf0723007
pubmed: 19053394