Evaluation of Schlemm Canal Parameters Using Swept-Source Optical Coherence Tomography in Eyes That Underwent Keratoplasty.
Journal
Eye & contact lens
ISSN: 1542-233X
Titre abrégé: Eye Contact Lens
Pays: United States
ID NLM: 101160941
Informations de publication
Date de publication:
01 Sep 2023
01 Sep 2023
Historique:
accepted:
17
05
2023
medline:
28
8
2023
pubmed:
7
7
2023
entrez:
7
7
2023
Statut:
ppublish
Résumé
In this study, we aimed to evaluate Schlemm canal parameters using anterior segment swept-source optical coherence tomography in eyes that underwent keratoplasty and compare them with keratoconus and healthy control groups. The study included 32 patients who underwent penetrating keratoplasty or deep anterior lamellar keratoplasty once due to keratoconus and age-matched and sex-matched 20 keratoconus patients and 30 healthy controls. In all the patients, a single horizontal image centered on the central cornea was obtained from the nasal and temporal quadrants with low-intensity scanning to visualize Schlemm canal. There was no statistically significant difference between the groups for age and gender ( P ˃0.05). In the keratoplasty group, the area and diameter of Schlemm canal were 2.266±1.141μm 2 and 160.77±65.08 μm, respectively, in the nasal quadrant and 2.623±1.277 μm 2 and 158.81±68.05 μm, respectively in the temporal quadrant, which were statistically significantly lower compared with other groups ( P <0.001 for all). There was no significant difference between the penetrating and deep anterior lamellar keratoplasty subgroups for Schlemm canal parameters. This is the first study to report anterior segment optical coherence tomography after surgery shows SC parameters that are, on average, less than age-matched and keratoconus controls.
Identifiants
pubmed: 37418302
doi: 10.1097/ICL.0000000000001011
pii: 00140068-990000000-00120
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
379-385Informations de copyright
Copyright © 2023 Contact Lens Association of Ophthalmologists.
Références
Haddadin RI, Chodosh J. Corneal transplantation and glaucoma. Semin Ophthalmol 2014; 29:380–396.
Dandona L, Naduvilath TJ, Janarthanan M, et al. Causes of corneal graft failure in India. Indian J Ophthalmol 1998;46:149–152.
Wagoner MD, Ba-Abbad R, Al-Mohaimeed M, et al. Postoperative complications after primary adult optical penetrating keratoplasty: Prevalence and impact on graft survival. Cornea 2009;28:385–394.
Al-Mohaimeed M, Al-Shahwan S, Al-Torbak A, et al. Escalation of glaucoma therapy after penetrating keratoplasty. Ophthalmology 2007;114:2281–2286.
Xie L, Shi W, Liu J, et al. Secondary glaucoma after penetrating keratoplasty. Zhonghua Yan Ke Za Zhi 2000;36:116–118.
Sharma RA, Bursztyn LL, Golesic E, et al. Comparison of intraocular pressure post penetrating keratoplasty vs Descemet's stripping endothelial keratoplasty. Can J Ophthalmol 2016;51:19–24.
Zimmerman TJ, Krupin T, Grodzki W, et al. The effect of suture depth on outflow facility in penetrating keratoplasty. Arch Ophthalmol 1978;96:505–506.
Zemba M, Stamate AC. Glaucoma after penetrating keratoplasty. Rom J Ophthalmol 2017;61:159–165.
Kirkness CM, Moshegov C. Post-keratoplasty glaucoma. Eye 1988;2:19–26.
Bron AJ, Tripathi RC, Tripathi BJ. Wolff's Anatomy of the Eye and Orbit. 8th ed Chapman and Hall; 1997.
Toris CB, Yablonski ME, Wang YL, et al. Aqueous humor dynamics in the aging human eye. Am J Ophthalmol 1999; 127:407–412.
Han DP, Lewis H, Lambrou FH Jr, et al. Mechanisms of intraocuular pressure elevation after pars plana vitrectomy. Ophthalmology 1989; 96:1357–1362.
Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006;90:262–267.
Allingham RR, de Kater AW, Ethier RC. Schlemm's canal and primary open angle glaucoma: Correlation between schlemm's canal dimensions and outflow facility. Exp Eye Res 1996;62:101–110.
Erickson-Lamy K, Rohen JW, Grant WM. Outflow facility studies in the perfused human ocular anterior segment. Exp Eye Res 1991;52:723–731.
Ellingsen BA, Grant WM. The relationship of pressure and aqueous outflow in enucleated human eyes. Invest Ophthalmol 1971;10:430–437.
Imamoglu S, Sevim MS, Alpogan O, et al. In vivo biometric evaluation of Schlemm's canal with spectral-domain optical coherence tomography in pseuduexfoliation glaucoma. Acta Ophthalmol 2016; 94:688–692.
Wang F, Shi G, Li X, et al. Comparison of Schlemm's canal's biological parameters in primary open-angle glaucoma and normal human eyes with swept source optical. J Biomed Opt 2012; 17:116008.
Hamanaka T, Takei A, Takemura T, et al. Pathological study of cases with secondary open-angle glaucoma due to sarcoidosis. Am J Ophthalmol 2002;134:17–26.
Chen Z, Sun J, Li M, et al. Effect of age on the morphologies of the human Schlemm's canal and trabecular meshwork measured with swept-source optical coherence tomography. Eye 2018;32:1621–1628.
Mansoori T, Reddy AA, Tumati NC, et al. Assessment of Schlemm's canal in acute primary angle closure: An anterior segment optical coherence tomography study. Int Ophthalmol 2019;39:2171–2177.
Hong J, Yang Y, Wei A, et al. Schlemm's canal expands after trabeculectomy in patients with primary angle-closure glaucoma. Invest Ophthalmol Vis Sci 2014;55:5637–5642.
Kagemann L, Wang B, Wollstein G, et al. IOP elevation reduces Schlemm's canal cross-sectional area. Invest Ophthalmol Vis Sci 2014;55:1805–1809.
Usui T, Tomidokoro A, Mishima K, et al. Identification of Schlemm's canal and its surrounding tissues by anterior segment fourier domain optical coherence tomography. Invest Ophthalmol Vis Sci 2011;52:6934–6939.
Wu S, Xu J. Incidence and risk factors for post-penetrating keratoplasty glaucoma: A systematic review and meta-analysis. PLoS One 2017;12:e0176261.
Karadag O, Kugu S, Erdogan G, et al. Incidence of and risk factors for increased intraocular pressure after penetrating keratoplasty. Cornea 2010;29:278–282.
Musa FU, Patil S, Rafiq O, et al. Long-term risk of intraocular pressure elevation and glaucoma escalation after deep anterior lamellar keratoplasty. Clin Exp Ophthalmol 2012;40:780–785.
França ET, Arcieri ES, Arcieri RS, et al. A study of glaucoma after penetrating keratoplasty. Cornea 2002;21:284–288.
Sharma A, Sharma S, Pandav SS, et al. Post penetrating keratoplasty glaucoma: Cumulative effect of quantifiable risk factors. Indian J Ophthalmol 2014;62:590.
Yildirim N, Gursoy H, Sahin A, et al. Glaucoma after penetrating keratoplasty: Incidence, risk factors, and management. J Ophthalmol 2011;2011:1–6.
Shi G, Wang F, Li X, et al. Morphometric measurement of Schlemm's canal in normal human eye using anterior segment swept source optical coherence tomography. J Biomed Opt 2012;17:016016.
Johnstone MA, Grant WM. Pressure-dependent changes in structures of the aqueous outflow system of human and monkey eyes. Am J Ophthalmol 1973;75:365–383.
Van Buskirk EM. Anatomic correlates of changing aqueous outflow facility in excised human eyes. Invest Ophthalmol Vis Sci 1982;22:625–632.
Olson RJ, Kaufman HE. A mathematical description of causative factors and prevention of elevated intraocular pressure after keratoplasty. Invest Ophthalmol Vis Sci 1977;16:1085–1092.
Wei Wei DY, Shen L, Manotosh R, et al. Relationship between postoperative intraocular pressure and refractive outcomes in patients after deep anterior lamellar keratoplasty. J Curr Ophthalmol 2022;34:30–36.
Gao K, Li F, Aung T, et al. Diurnal variations in the morphology of Schlemm's canal and intraocular pressure in healthy Chinese: An SS-OCT study. Invest Ophthalmol Vis Sci 2017;58:5777–5782.
Zhao Z, Zhu X, He W, et al. Schlemm's canal expansion after uncomplicated phacoemulsification surgery: An optical coherence tomography study. Invest Ophthalmol Vis Sci 2016;57:6507–6512.
Chen J, Huang H, Zhang S, et al. Expansion of Schlemm's canal by travoprost in healthy subjects determined by Fourier-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2013;54:1127–1134.
Skaat A, Rosman MS, Chien JL, et al. Effect of pilocarpine hydrochloride on the Schlemm canal in healthy eyes and eyes with open-angle glaucoma. JAMA Ophthalmol 2016; 134:976–981.
Chen L, Chen Z, Deng C, et al. Changes to outflow structures after pilocarpine in primary open angle glaucoma compared to healthy individuals using optical coherence tomography. J Glaucoma. 2022. [epub ahead of print].
Clement Freiberg J, von Spreckelsen A, Kolko M, et al. Rho kinase inhibitor for primary open-angle glaucoma and ocular hypertension. Cochrane database Syst Rev 2022;6:CD013817.
Andrés-Guerrero V, García-Feijoo J, Konstas AG. Targeting Schlemm's canal in the medical therapy of glaucoma: Current and future considerations. Adv Ther 2017;34:1049–1069.