An in vitro autologous, vascularized, and immunocompetent Tissue Engineered Skin model obtained by the self-assembled approach.


Journal

Acta biomaterialia
ISSN: 1878-7568
Titre abrégé: Acta Biomater
Pays: England
ID NLM: 101233144

Informations de publication

Date de publication:
15 09 2023
Historique:
received: 18 01 2023
revised: 22 06 2023
accepted: 28 06 2023
medline: 22 8 2023
pubmed: 8 7 2023
entrez: 7 7 2023
Statut: ppublish

Résumé

A complete in vitro skin model, containing resident cell types is needed to understand physiology and to consider the role of immune and endothelial cells in dermal drug testing. In this study, a cell extraction technique was developed to isolate resident skin cells from the same human donor while preserving the immune and endothelial cells. Then those cells were used to reconstruct an autologous, vascularized, and immunocompetent Tissue-Engineered Skin model, aviTES. Phenotypic characterization of the viable cells was performed on freshly isolated cells and after thawing through flow cytometry. Dermal cell extracts were characterized as fibroblasts, endothelial and immune cells, and the average amount of each cell type represents 4, 0.5, and 1 million viable cells per g of the dermis, respectively. The 3D models, TES and aviTES, were characterized by a fully differentiated epidermis that showed an increase in the presence of Ki67+ cells in the basolateral layer of the aviTES model. Capillary-like network formation, through the self-assembly of endothelial cells, and the presence of functional immune cells were identified through immunofluorescence staining in aviTES. In addition, the aviTES model was immunocompetent, as evidenced by its capacity to increase the production of pro-inflammatory cytokines TNF-α, MIP-1α, and GM-CSF following LPS stimulation. This study describes an autologous skin model containing a functional resident skin immune system and a capillary network. It provides a relevant tool to study the contribution of the immune system to skin diseases and inflammatory responses and to investigate resident skin cell interactions and drug development. STATEMENT OF SIGNIFICANCE: There is an urgent need for a complete in vitro skin model containing the resident cell types to better understand the role of immune and endothelial cells in skin and to be able to use it for drug testing. Actual 3D models of human skin most often contain only fibroblasts and keratinocytes with a limited number of models containing endothelial cells or a limited variety of immune cells. This study describes an autologous skin model containing a functional resident skin immune system and a capillary network. It provides a relevant tool to study the contribution of the immune system to skin diseases and inflammatory responses and to investigate interactions between resident skin cell, improving our capacity to develop new drugs.

Identifiants

pubmed: 37419164
pii: S1742-7061(23)00378-1
doi: 10.1016/j.actbio.2023.06.045
pii:
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

361-371

Informations de copyright

Copyright © 2023 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Déclaration de conflit d'intérêts

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Auteurs

Emilie Attiogbe (E)

Centre de Recherche en Organogénèse Expérimentale de l'Université Laval (LOEX), Québec, QC, Canada; Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.

Sébastien Larochelle (S)

Centre de Recherche en Organogénèse Expérimentale de l'Université Laval (LOEX), Québec, QC, Canada; Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.

Yanis Chaib (Y)

Centre de Recherche en Organogénèse Expérimentale de l'Université Laval (LOEX), Québec, QC, Canada; Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.

Carine Mainzer (C)

R&D department, SILAB, Brive, France.

Adèle Mauroux (A)

R&D department, SILAB, Brive, France.

Sylvie Bordes (S)

R&D department, SILAB, Brive, France.

Brigitte Closs (B)

R&D department, SILAB, Brive, France.

Caroline Gilbert (C)

Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Faculty of Medicine, Université Laval, Québec, QC, Canada.

Véronique J Moulin (VJ)

Centre de Recherche en Organogénèse Expérimentale de l'Université Laval (LOEX), Québec, QC, Canada; Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Faculty of Medicine, Université Laval, Québec, QC, Canada. Electronic address: veronique.moulin@fmed.ulaval.ca.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH