Using Variational Quantum Algorithm to Solve the LWE Problem.
KYBER
LWE
QAOA
VQE
quantum
Journal
Entropy (Basel, Switzerland)
ISSN: 1099-4300
Titre abrégé: Entropy (Basel)
Pays: Switzerland
ID NLM: 101243874
Informations de publication
Date de publication:
08 Oct 2022
08 Oct 2022
Historique:
received:
30
08
2022
revised:
30
09
2022
accepted:
02
10
2022
medline:
8
7
2023
pubmed:
8
7
2023
entrez:
8
7
2023
Statut:
epublish
Résumé
The variational quantum algorithm (VQA) is a hybrid classical-quantum algorithm. It can actually run in an intermediate-scale quantum device where the number of available qubits is too limited to perform quantum error correction, so it is one of the most promising quantum algorithms in the noisy intermediate-scale quantum era. In this paper, two ideas for solving the learning with errors problem (LWE) using VQA are proposed. First, after reducing the LWE problem into the bounded distance decoding problem, the quantum approximation optimization algorithm (QAOA) is introduced to improve classical methods. Second, after the LWE problem is reduced into the unique shortest vector problem, the variational quantum eigensolver (VQE) is used to solve it, and the number of qubits required is calculated in detail. Small-scale experiments are carried out for the two LWE variational quantum algorithms, and the experiments show that VQA improves the quality of the classical solutions.
Identifiants
pubmed: 37420448
pii: e24101428
doi: 10.3390/e24101428
pmc: PMC9602000
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : National Natural Science Foundation of China
ID : Grants No. 61972413
Organisme : National Natural Science Foundation of China
ID : Grants No.61901525
Organisme : National Natural Science Foundation of China
ID : Grants No.62002385
Références
Nat Commun. 2014 Jul 23;5:4213
pubmed: 25055053
Sci Rep. 2019 Jul 24;9(1):10736
pubmed: 31341200
Research (Wash D C). 2020 Mar 23;2020:1486935
pubmed: 32274468