Estimation of Particle Location in Granular Materials Based on Graph Neural Networks.
coordinate prediction
distance estimation algorithm
distance information
graph convolutional network
particle locations
two-dimensional photoelastic granular materials
Journal
Micromachines
ISSN: 2072-666X
Titre abrégé: Micromachines (Basel)
Pays: Switzerland
ID NLM: 101640903
Informations de publication
Date de publication:
23 Mar 2023
23 Mar 2023
Historique:
received:
21
02
2023
revised:
20
03
2023
accepted:
21
03
2023
medline:
8
7
2023
pubmed:
8
7
2023
entrez:
8
7
2023
Statut:
epublish
Résumé
Particle locations determine the whole structure of a granular system, which is crucial to understanding various anomalous behaviors in glasses and amorphous solids. How to accurately determine the coordinates of each particle in such materials within a short time has always been a challenge. In this paper, we use an improved graph convolutional neural network to estimate the particle locations in two-dimensional photoelastic granular materials purely from the knowledge of the distances for each particle, which can be estimated in advance via a distance estimation algorithm. The robustness and effectiveness of our model are verified by testing other granular systems with different disorder degrees, as well as systems with different configurations. In this study, we attempt to provide a new route to the structural information of granular systems irrelevant to dimensionality, compositions, or other material properties.
Identifiants
pubmed: 37420946
pii: mi14040714
doi: 10.3390/mi14040714
pmc: PMC10142062
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : the Natural Science Foundation of Hunan Province
ID : 2021JJ30878
Organisme : the National Natural Science Foundation of China
ID : 11904410
Organisme : the 368 Natural Science Foundation of Hunan Province
ID : 2021JJ40712
Références
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):042206
pubmed: 25974483
IEEE Trans Med Imaging. 2022 Sep;41(9):2207-2216
pubmed: 35286257
Nat Commun. 2022 Jul 14;13(1):4081
pubmed: 35835739
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Apr;73(4 Pt 1):041304
pubmed: 16711790
Cell Syst. 2020 Oct 21;11(4):402-411.e4
pubmed: 32971019
Nat Commun. 2016 Feb 17;7:10641
pubmed: 26883071
Nat Commun. 2017 Jul 10;8(1):67
pubmed: 28694525
Front Genet. 2021 Jul 29;12:690049
pubmed: 34394185
Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):E9767-E9774
pubmed: 29087941
Phys Rev Lett. 2014 Aug 29;113(9):098001
pubmed: 25216006
Phys Rev E. 2016 Jan;93(1):011001
pubmed: 26871014
Nat Commun. 2018 Jul 25;9(1):2911
pubmed: 30046062
IEEE Trans Med Imaging. 2022 Mar;41(3):690-701
pubmed: 34714742
Nat Commun. 2022 Jul 30;13(1):4424
pubmed: 35908018
RSC Adv. 2020 Jun 1;10(35):20701-20712
pubmed: 35517730
IEEE J Biomed Health Inform. 2021 Mar;25(3):818-826
pubmed: 32749976
Phys Rev E. 2016 Dec;94(6-1):062902
pubmed: 28085297
Chem Sci. 2020 Aug 11;11(35):9524-9531
pubmed: 34123175
J Am Chem Soc. 2020 Nov 4;142(44):18836-18843
pubmed: 33104335
Patterns (N Y). 2020 Nov 12;1(9):100142
pubmed: 33336200
J Chem Inf Model. 2020 Oct 26;60(10):4518-4535
pubmed: 32866381
Phys Rev Lett. 2007 Feb 2;98(5):058001
pubmed: 17358902
Nature. 2005 Oct 6;437(7060):871-4
pubmed: 16208368
Res Pract Thromb Haemost. 2019 Oct 25;4(1):72-85
pubmed: 31989087
Nat Commun. 2015 Sep 28;6:8409
pubmed: 26412008
Patterns (N Y). 2022 Apr 27;3(5):100491
pubmed: 35607621