Cyclin D1 promotes radioresistance through regulation of RAD51 in melanoma.


Journal

Experimental dermatology
ISSN: 1600-0625
Titre abrégé: Exp Dermatol
Pays: Denmark
ID NLM: 9301549

Informations de publication

Date de publication:
10 2023
Historique:
revised: 22 06 2023
received: 30 01 2023
accepted: 23 06 2023
medline: 12 10 2023
pubmed: 8 7 2023
entrez: 8 7 2023
Statut: ppublish

Résumé

Melanoma is a notoriously radioresistant type of skin cancer. Elucidation of the specific mechanisms underlying radioresistance is necessary to improve the clinical efficacy of radiation therapy. To identify the key factors contributing to radioresistance, five melanoma cell lines were selected for study and genes that were upregulated in relatively radioresistant melanomas compared with radiosensitive melanoma cells determined via RNA sequencing technology. In particular, we focused on cyclin D1 (CCND1), a well known cell cycle regulatory molecule. In radiosensitive melanoma, overexpression of cyclin D1 reduced apoptosis. In radioresistant melanoma cell lines, suppression of cyclin D1 with a specific inhibitor or siRNA increased apoptosis and decreased cell proliferation in 2D and 3D spheroid cultures. In addition, we observed increased expression of γ-H2AX, a molecular marker of DNA damage, even at a later time after γ-irradiation, under conditions of inhibition of cyclin D1, with a response pattern similar to that of radiosensitive SK-Mel5. In the same context, expression and nuclear foci formation of RAD51, a key enzyme for homologous recombination (HR), were reduced upon inhibition of cyclin D1. Downregulation of RAD51 also reduced cell survival to irradiation. Overall, suppression of cyclin D1 expression or function led to reduced radiation-induced DNA damage response (DDR) and triggered cell death. Our collective findings indicate that the presence of increased cyclin D1 potentially contributes to the development of radioresistance through effects on RAD51 in melanoma and could therefore serve as a therapeutic target for improving the efficacy of radiation therapy.

Identifiants

pubmed: 37421206
doi: 10.1111/exd.14877
doi:

Substances chimiques

Cyclin D1 136601-57-5
RAD51 protein, human EC 2.7.7.-
Rad51 Recombinase EC 2.7.7.-
CCND1 protein, human 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1706-1716

Informations de copyright

© 2023 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Références

Baskar R, Dai J, Wenlong N, Yeo R, Yeoh KW. Biological response of cancer cells to radiation treatment. Front Mol Biosci. 2014;1:24. doi:10.3389/fmolb.2014.00024
Toulany M. Targeting DNA double-strand break repair pathways to improve radiotherapy response. Genes (Basel). 2019;10(1):25. doi:10.3390/genes10010025
Thompson MK, Poortmans P, Chalmers AJ, et al. Practice-changing radiation therapy trials for the treatment of cancer: where are we 150 years after the birth of Marie curie? Br J Cancer. 2018;119(4):389-407. doi:10.1038/s41416-018-0201-z
Shimura T. Targeting the AKT/cyclin D1 pathway to overcome intrinsic and acquired radioresistance of tumors for effective radiotherapy. Int J Radiat Biol. 2017;93(4):381-385. doi:10.1080/09553002.2016.1257832
Rigel DS, Carucci JA. Malignant melanoma: prevention, early detection, and treatment in the 21st century. CA Cancer J Clin. 2000;50(4):215-236. doi:10.3322/canjclin.50.4.215
Obenauf AC, Zou Y, Ji AL, et al. Therapy-induced tumour secretomes promote resistance and tumour progression. Nature. 2015;520(7547):368-372. doi:10.1038/nature14336
Balch CM, Gershenwald JE, Soong SJ, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 2009;27(36):6199-6206. doi:10.1200/JCO.2009.23.4799
Jeggo P, Lobrich M. Radiation-induced DNA damage responses. Radiat Prot Dosimetry. 2006;122(1-4):124-127. doi:10.1093/rpd/ncl495
Lee JM, Bernstein A. p53 mutations increase resistance to ionizing radiation. Proc Natl Acad Sci U S A. 1993;90(12):5742-5746. doi:10.1073/pnas.90.12.5742
Hehlgans S, Cordes N. Caveolin-1: an essential modulator of cancer cell radio-and chemoresistance. Am J Cancer Res. 2011;1(4):521-530.
Im H, Lee J, Ryu KY, Yi JY. Integrin alphavbeta3-Akt signalling plays a role in radioresistance of melanoma. Exp Dermatol. 2020;29(6):562-569. doi:10.1111/exd.14102
Ogawa K, Murayama S, Mori M. Predicting the tumor response to radiotherapy using microarray analysis (review). Oncol Rep. 2007;18(5):1243-1248.
Matsushime H, Ewen ME, Strom DK, et al. Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins. Cell. 1992;71(2):323-334. doi:10.1016/0092-8674(92)90360-o
Diehl JA. Cycling to cancer with cyclin D1. Cancer Biol Ther. 2002;1(3):226-231. doi:10.4161/cbt.72
Shimura T. Acquired radioresistance of cancer and the AKT/GSK3beta/cyclin D1 overexpression cycle. J Radiat Res. 2011;52(5):539-544. doi:10.1269/jrr.11098
Jirawatnotai S, Hu Y, Michowski W, et al. A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers. Nature. 2011;474(7350):230-234. doi:10.1038/nature10155
Jirawatnotai S, Hu Y, Livingston DM, Sicinski P. Proteomic identification of a direct role for cyclin d1 in DNA damage repair. Cancer Res. 2012;72(17):4289-4293. doi:10.1158/0008-5472.CAN-11-3549
Chalermrujinanant C, Michowski W, Sittithumcharee G, Esashi F, Jirawatnotai S. Cyclin D1 promotes BRCA2-Rad51 interaction by restricting cyclin A/B-dependent BRCA2 phosphorylation. Oncogene. 2016;35(22):2815-2823. doi:10.1038/onc.2015.354
Yoon SW, Kim DK, Kim KP, Park KS. Rad51 regulates cell cycle progression by preserving G2/M transition in mouse embryonic stem cells. Stem Cells Dev. 2014;23(22):2700-2711. doi:10.1089/scd.2014.0129
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402-408. doi:10.1006/meth.2001.1262
Duckworth C, Zhang L, Carroll SL, Ethier SP, Cheung HW. Overexpression of GAB2 in ovarian cancer cells promotes tumor growth and angiogenesis by upregulating chemokine expression. Oncogene. 2016;35(31):4036-4047. doi:10.1038/onc.2015.472
Zhang H, Cui B, Zhou Y, et al. B2M overexpression correlates with malignancy and immune signatures in human gliomas. Sci Rep. 2021;11(1):5045. doi:10.1038/s41598-021-84465-6
Song J, Cui D, Wang J, et al. Overexpression of HMGA1 confers radioresistance by transactivating RAD51 in cholangiocarcinoma. Cell Death Dis. 2021;7(1):322. doi:10.1038/s41420-021-00721-8
Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL. Cyclin D as a therapeutic target in cancer. Nat Rev Cancer. 2011;11(8):558-572. doi:10.1038/nrc3090
Hirakawa T, Nasu K, Aoyagi Y, Takebayashi K, Narahara H. Arcyriaflavin a, a cyclin D1-cyclin-dependent kinase4 inhibitor, induces apoptosis and inhibits proliferation of human endometriotic stromal cells: a potential therapeutic agent in endometriosis. Reprod Biol Endocrinol. 2017;15(1):53. doi:10.1186/s12958-017-0272-3
Baldin V, Lukas J, Marcote MJ, Pagano M, Draetta G. Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev. 1993;7(5):812-821. doi:10.1101/gad.7.5.812
Wang X, McGowan CH, Zhao M, et al. Involvement of the MKK6-p38gamma cascade in gamma-radiation-induced cell cycle arrest. Mol Cell Biol. 2000;20(13):4543-4552. doi:10.1128/MCB.20.13.4543-4552.2000
Kostyrko K, Bosshard S, Urban Z, Mermod N. A role for homologous recombination proteins in cell cycle regulation. Cell Cycle. 2015;14(17):2853-2861. doi:10.1080/15384101.2015.1049784
Li Z, Chen K, Jiao X, et al. Cyclin D1 integrates estrogen-mediated DNA damage repair signaling. Cancer Res. 2014;74(14):3959-3970. doi:10.1158/0008-5472.CAN-13-3137
Cruz C, Castroviejo-Bermejo M, Gutierrez-Enriquez S, et al. RAD51 foci as a functional biomarker of homologous recombination repair and PARP inhibitor resistance in germline BRCA-mutated breast cancer. Ann Oncol. 2018;29(5):1203-1210. doi:10.1093/annonc/mdy099
Feofanova N, Geraldo JM, de Andrade LM. Radiation oncology in vitro: trends to improve radiotherapy through molecular targets. Biomed Res Int. 2014;2014:461687. doi:10.1155/2014/461687
Robb R, Yang L, Shen C, et al. Inhibiting BRAF Oncogene-Mediated Radioresistance Effectively Radiosensitizes BRAF(V600E)-Mutant Thyroid Cancer Cells by Constraining DNA Double-Strand Break Repair. Clin Cancer Res. 2019;25(15):4749-4760. doi:10.1158/1078-0432.CCR-18-3625
Schick U, Kyula J, Barker H, et al. Trametinib radiosensitises RAS- and BRAF-mutated melanoma by perturbing cell cycle and inducing senescence. Radiother Oncol. 2015;117(2):364-375. doi:10.1016/j.radonc.2015.06.026
Huang RX, Zhou PK. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther. 2020;5(1):60. doi:10.1038/s41392-020-0150-x
Hou DL, Chen L, Liu B, Song LN, Fang T. Identification of common gene networks responsive to radiotherapy in human cancer cells. Cancer Gene Ther. 2014;21(12):542-548. doi:10.1038/cgt.2014.62
Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447-D452. doi:10.1093/nar/gku1003
Guo Y, Zhang Y, Zhang SJ, Ma YN, He Y. Comprehensive analysis of key genes and microRNAs in radioresistant nasopharyngeal carcinoma. BMC Med Genomics. 2019;12(1):73. doi:10.1186/s12920-019-0507-6
Jares P, Colomer D, Campo E. Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics. Nat Rev Cancer. 2007;7(10):750-762. doi:10.1038/nrc2230
Yang H, Wu L, Ke S, et al. Downregulation of ubiquitin-conjugating enzyme UBE2D3 promotes telomere maintenance and Radioresistance of Eca-109 human esophageal carcinoma cells. J Cancer. 2016;7(9):1152-1162. doi:10.7150/jca.14745
Shimura T, Kakuda S, Ochiai Y, et al. Acquired radioresistance of human tumor cells by DNA-PK/AKT/GSK3beta-mediated cyclin D1 overexpression. Oncogene. 2010;29(34):4826-4837. doi:10.1038/onc.2010.238
Fei Z, Gu W, Xie R, Su H, Jiang Y. Artesunate enhances radiosensitivity of esophageal cancer cells by inhibiting the repair of DNA damage. J Pharmacol Sci. 2018;138(2):131-137. doi:10.1016/j.jphs.2018.09.011
Zhou Y, Zhang L, Fan J, et al. Let-7b overexpression leads to increased radiosensitivity of uveal melanoma cells. Melanoma Res. 2015;25(2):119-126. doi:10.1097/CMR.0000000000000140
Yu XN, Zhang GC, Liu HN, et al. Pre-mRNA processing factor 19 functions in DNA damage repair and radioresistance by modulating cyclin D1 in hepatocellular carcinoma. Mol Ther Nucleic Acids. 2022;27:390-403. doi:10.1016/j.omtn.2021.12.002
Britt AB. Repair of DNA damage induced by ultraviolet radiation. Plant Physiol. 1995;108(3):891-896. doi:10.1104/pp.108.3.891
McMahon SJ, Schuemann J, Paganetti H, Prise KM. Mechanistic modelling of DNA repair and cellular survival following radiation-induced DNA damage. Sci Rep. 2016;6:33290. doi:10.1038/srep33290
Biau J, Chautard E, Verrelle P, Dutreix M. Altering DNA repair to improve radiation therapy: specific and multiple pathway Targeting. Front Oncol. 2019;9:1009. doi:10.3389/fonc.2019.01009
Casimiro MC, Di Sante G, Ju X, et al. Cyclin D1 promotes androgen-dependent DNA damage repair in prostate cancer cells. Cancer Res. 2016;76(2):329-338. doi:10.1158/0008-5472.CAN-15-0999
Rogakou EP, Nieves-Neira W, Boon C, Pommier Y, Bonner WM. Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. J Biol Chem. 2000;275(13):9390-9395. doi:10.1074/jbc.275.13.9390
Ding D, Zhang Y, Wang J, et al. Induction and inhibition of the pan-nuclear gamma-H2AX response in resting human peripheral blood lymphocytes after X-ray irradiation. Cell Death Dis. 2016;2:16011. doi:10.1038/cddiscovery.2016.11
Kobashigawa S, Morikawa K, Mori H, Kashino G. Gemcitabine induces Radiosensitization through inhibition of RAD51-dependent repair for DNA double-strand breaks. Anticancer Res. 2015;35(5):2731-2737.
Ding H, Wang Y, Zhang H. CCND1 silencing suppresses liver cancer stem cell differentiation and overcomes 5-fluorouracil resistance in hepatocellular carcinoma. J Pharmacol Sci. 2020;143(3):219-225. doi:10.1016/j.jphs.2020.04.006
Wang M, Sun L, Qian J, et al. Cyclin D1 as a universally expressed mantle cell lymphoma-associated tumor antigen for immunotherapy. Leukemia. 2009;23(7):1320-1328. doi:10.1038/leu.2009.19

Auteurs

Hyuntaik Im (H)

Division of Basic Radiation Bioscience, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea.
Department of Life Science, University of Seoul, Seoul, South Korea.

Jeeyong Lee (J)

Division of Basic Radiation Bioscience, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea.

Hae Jin Lee (HJ)

Division of Basic Radiation Bioscience, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea.

Da Yeon Kim (DY)

Division of Basic Radiation Bioscience, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea.

Eun Ju Kim (EJ)

Division of Basic Radiation Bioscience, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea.

Jae Youn Yi (JY)

Division of Basic Radiation Bioscience, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH