EEG microstate co-specificity in schizophrenia and obsessive-compulsive disorder.
EEG
Microstates
OCD
Resting state
Schizophrenia
Journal
European archives of psychiatry and clinical neuroscience
ISSN: 1433-8491
Titre abrégé: Eur Arch Psychiatry Clin Neurosci
Pays: Germany
ID NLM: 9103030
Informations de publication
Date de publication:
08 Jul 2023
08 Jul 2023
Historique:
received:
17
04
2023
accepted:
19
06
2023
medline:
8
7
2023
pubmed:
8
7
2023
entrez:
8
7
2023
Statut:
aheadofprint
Résumé
The past 20 years of research on EEG microstates has yielded the hypothesis that the imbalance pattern in the temporal dynamics of microstates C (increased) and D (decreased) is specific to schizophrenia. A similar microstate imbalance has been recently found in obsessive-compulsive disorder (OCD). The aim of the present high-density EEG study was to examine whether this pathological microstate pattern is co-specific to schizophrenia and OCD. We compared microstate temporal dynamics using Bayesian analyses, transition probabilities analyses and the Topographic Electrophysiological State Source-Imaging method for source reconstruction in 24 OCD patients and 28 schizophrenia patients, respectively, free of comorbid psychotic and OCD symptoms, and 27 healthy controls. OCD and schizophrenia patients exhibited the same increased contribution of microstate C, decreased duration and contribution of microstate D and greater D → C transition probabilities, compared with controls. A Bayes factor of 4.424 for the contribution of microstate C, 4.600 and 3.824, respectively, for the duration and contribution of microstate D demonstrated that there was no difference in microstate patterns between the two disorders. Source reconstruction further showed undistinguishable dysregulations between the Salience Network (SN), associated with microstate C, and the Executive Control Network (ECN), associated with microstate D, and between the ECN and cognitive cortico-striato-thalamo-cortical (CSTC) loop in the two disorders. The ECN/CSTC loop dysconnectivity was slightly worsened in schizophrenia. Our findings provide substantial evidence for a common aetiological pathway in schizophrenia and OCD, i.e. microstate co-specificity, and same anomalies in salience and external attention processing, leading to co-expression of symptoms.
Identifiants
pubmed: 37421444
doi: 10.1007/s00406-023-01642-6
pii: 10.1007/s00406-023-01642-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany.
Références
Sui J, Jiang R, Bustillo J, Calhoun V (2020) Neuroimaging-based individualized prediction of cognition and behaviour for mental disorders and health: methods and promises. Biol Psychiatry 88:818–828. https://doi.org/10.1016/j.biopsycj.2020.02.016
doi: 10.1016/j.biopsycj.2020.02.016
pubmed: 32336400
pmcid: 7483317
Michel CM, Koenig T (2018) EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review. Neuroimage. https://doi.org/10.1016/j.neuroimage.2017.11.062
doi: 10.1016/j.neuroimage.2017.11.062
pubmed: 29527499
Lehmann D, Pal OH (1987) EEG alpha map series: brain microstates by space-oriented adaptive segmentation. Electroencephalogr Clin Neurophysiol. https://doi.org/10.1016/0013-4694(87)90025-3
doi: 10.1016/0013-4694(87)90025-3
pubmed: 2441961
Koenig T, Lehmann D, Merlo MC, Koukkou KK (1999) Deviant EEG brain microstate in acute, neuroleptic-naïve schizophrenics at rest. Eur Arch Psychiatry Clin Neurosci 249:205–211. https://doi.org/10.1007/s004060050088
doi: 10.1007/s004060050088
pubmed: 10449596
Lehmann D, Faber PL, Galderisi S, Hermann WH, Kinoshita T, Koukkou M, Mucci A, Pascual-Marqui RD, Saito N, Wackerman J, Winterer G, Koenig T (2005) EEG microstate duration and syntax in acute, medication-naïve, first-episode schizophrenia: a multi-center study. Psychiatry Res 138:141–156. https://doi.org/10.1016/j.psychresns.2004.05.007
doi: 10.1016/j.psychresns.2004.05.007
pubmed: 15766637
Da Cruz JR, Favrod O, Roinishvili M, Chkonia E, Brand A, Mohr C, Figueiredp P, Herzog M (2020) EEG microstates are candidate endophenotype for schizophrenia. Nat Commun 11:3086. https://doi.org/10.1038/s41467-020-16914-1
doi: 10.1038/s41467-020-16914-1
Schwab S, Koenig T, Morishima Y, Dierks T, Federspiel A, Jann K (2015) Discovering frequency sensitive thalamic nuclei from EEG microstate informed resting state fMRI. Neuroimage 118:386–375. https://doi.org/10.1016/j.neuroimage.2015.06.001
doi: 10.1016/j.neuroimage.2015.06.001
Custo A, Van de Ville D, Wells WM, Tomescu MI, Brunet D, Michel CM (2017) Electroencephalographic Resting-State Networks: Source Localizations of Microstates. Brain Connect 7:671–682. https://doi.org/10.1089/brain.2016.0476
doi: 10.1089/brain.2016.0476
pubmed: 28938855
pmcid: 5736178
Thirioux B, Langbour N, Bokam P, Renaudin L, Wassouf I, Harika-Germaneau G, Jaafari N (2023) Microstates imbalance is associated with a functional dysregulation of the Resting-State Networks in Obsessive–Compulsive Disorder: a high-density electrical neuroimaging study using the TESS method. Cereb Cortex 33:2593–2611. https://doi.org/10.1096/cercor/bhac.229
doi: 10.1096/cercor/bhac.229
pubmed: 35739579
Britz J, Van de Ville D, Michel CM (2010) BOLD correlates of EEG topography reveal rapid resting-state networks dynamics. Neuroimage 52:1162–1170. https://doi.org/10.1016/j.neuroimage.2010.02.052
doi: 10.1016/j.neuroimage.2010.02.052
pubmed: 20188188
Menon V (2011) Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci 15:483–506. https://doi.org/10.1016/j.tics.2011.08.003
doi: 10.1016/j.tics.2011.08.003
pubmed: 21908230
Rieger K, Diaz Hernandez L, Baenninger A, Koenig T (2016) 15 years of microstate research in schizophrenia – where are we? A meta-analysis Front Psychiatry 7:22. https://doi.org/10.3389/fpsyt.2016.00022
doi: 10.3389/fpsyt.2016.00022
pubmed: 26955358
Tomescu M, Rihs TA, Becker R, Britz J, Custo A, Grouiller F, Schneider M, Debbané M, Eliez S, Michel CM (2014) Deviant dynamics of EEG resting state pattern in 22q11.2 deletion syndrome adolescents: A vulnerability marker of schizophrenia? Schizophr Res 157:175–181. https://doi.org/10.1016/J.schres.2014.05.036
doi: 10.1016/J.schres.2014.05.036
pubmed: 24962438
Tait L, Tamagnini F, Stothart G, Barvas E, Monaldini C, Frusciante R, Volpini M, Guttman S, Coulthard E, Brown TJ, Kazanina N, Goodfellow M (2020) EEG microstates complexity for aiding early diagnosis of Alzheimer’s disease. Sci Rep 10:17627. https://doi.org/10.1038/s41598-020-74790-7
doi: 10.1038/s41598-020-74790-7
pubmed: 33077823
pmcid: 7572485
Murphy M, Whitton AE, Deccy S, Ironside ML, Rutherford A, Beltzer M, Sacchet M, Pizzaglia DA (2020) Abnormalities in electroencephalographic microstates are state and trait markers of major depressive disorder. Neuropsychopharmacology 45:2030–2037. https://doi.org/10.1038/s41386-020-0749-1
doi: 10.1038/s41386-020-0749-1
pubmed: 32590838
pmcid: 7547108
Tomescu M, Rihs TA, Roinishvili M, Karahanoglu FI, Schneider M, Menghetti S, Van De Ville D, Brand A, Chkonia, E, Eliez S, Herzog MH, Michel CM, Cappe C (2015) Schizophrenia patients and 22q11.2 deletion syndrome adolescents at risk express the same deviant pattern of resting state EEG microstates: a candidate endophenotype of schizophrenia. Schizophr Res Cogn 10.1016.j.scog.2015.04.005.
Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, Hergueta T, Baker R, Dunbar GC (1998) The Mini-International Neuropsychiatric Interview (M.I.N.I): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 59:22–33
pubmed: 9881538
Goodman WK, Price LH, Rasmussen SA, Mazure C, Delgado P, Heninger GR, Charney DS (1989) The Yale–Brown Obsessive–Compulsive Scale. II Validity Arch Gen Psychiatry 46:1012–1016. https://doi.org/10.1001/archpsyc.199.01810110054008
doi: 10.1001/archpsyc.199.01810110054008
pubmed: 2510699
Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 13:261–276. https://doi.org/10.1093/schbul/13.2.261
doi: 10.1093/schbul/13.2.261
pubmed: 3616518
Ruggeri P, Meziane HB, Koenig T, Brandner CA (2019) A fine-grained time course investigation of brain dynamics during conflict monitoring. Sci Report 9:3667. https://doi.org/10.1038/s41598-019-40277-3
doi: 10.1038/s41598-019-40277-3
Perrin F, Pernier J, Bertrand O, Giard MH, Echallier JF (1987) Mapping of scalp potentials by surface spline interpolation. Electroencephalogr Clin Neurophysiol 66:75–81. https://doi.org/10.1016/0013-4694(87)901414-6
doi: 10.1016/0013-4694(87)901414-6
pubmed: 2431869
Koenig T, Kottlow M, Stein M, Melie-García L (2011) Ragu: a free tool for the analysis of EEG and MEG event-related scalp field data using global randomization statistics. Comput Intell Neurosci. https://doi.org/10.1155/2011/938925
doi: 10.1155/2011/938925
pubmed: 21403863
pmcid: 3049349
Koenig T, Stein M, Grieder M, Kottlow M (2014) A tutorial on data-driven methods for statistically assessing ERP topographies. Brain Topogr 27:72–83. https://doi.org/10.1007/s10548-013-0310-1
doi: 10.1007/s10548-013-0310-1
pubmed: 23990321
Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21. https://doi.org/10.1016/j.neumeth.2003.10.009
doi: 10.1016/j.neumeth.2003.10.009
pubmed: 15102499
Pascual-Marqui RD, Michel CM, Lehmann D (1995) Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Trans Biomed Eng 42:658–665. https://doi.org/10.1109/10.391164
doi: 10.1109/10.391164
pubmed: 7622149
Lehmann D, Skrandies W (1980) Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electrocencephalogr Clin Neurophysiol 48:609–621. https://doi.org/10.1016/0013-4694(80)90419-8
doi: 10.1016/0013-4694(80)90419-8
Koenig T, Prichep L, Lehmann D, Sosa PV, Braeker E, Kleinlogel H, Isenhart R, John ER (2002) Millisecond by millisecond, year by year: normative EEG microstates and developmental stages. Neuroimage 16:41–48. https://doi.org/10.1006/nimg.2002.1070
doi: 10.1006/nimg.2002.1070
pubmed: 11969316
Quitana DS, Williams DR (2018) Bayesian alternatives for common null-hypothesis significance tests in psychiatry: a non-technical guide using JASP. BMC Psychiatry 18:178. https://doi.org/10.1186/s12888-018-1761-4
doi: 10.1186/s12888-018-1761-4
Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24:5–12
pubmed: 12575463
Michel CM, Murray MM, Lantz G, Gonzales G, Spinelli L, Grave de Peralta R (2004) EEG source imaging. Clin Neurophysiol 115:2195–2222. https://doi.org/10.1016/j.clinph.2004.06.001
doi: 10.1016/j.clinph.2004.06.001
pubmed: 15351361
Brodbeck V, Kuhn A, von Wegner F, Morzelewski A, Tagliazucchi E, Borisov S, Michel CM, Laufs H (2012) EEG microstates of wakefulness and NREM sleep. Neuroimage 62:2129–2139. https://doi.org/10.1016/j.neuroimage.2012.05.060
doi: 10.1016/j.neuroimage.2012.05.060
pubmed: 22658975
Meier SM, Petersen L, Pedersen MG, Arendt MC, Nielsen PR, Mattheisen M, Mors O, Mortensen PB (2014) Obsessive–compulsive disorder as a risk factor for schizophrenia: a nationwide study. JAMA Psychiat 71:1215–1221. https://doi.org/10.1001/jamapsychiatry.2014.1011
doi: 10.1001/jamapsychiatry.2014.1011
Tibbo P, Warnecke L (1999) Obsessive–compulsive disorder in schizophrenia: epidemiological and biologic overlap. J Psychiatry Neurosci 24:15–24
pubmed: 9987204
pmcid: 1188973
Katayama H, Gianotti LRR, Isotani T, Faber PL, Sasada K, Kinoshita T, Lehmann D (2007) Classes of multichannel EEG microstates in light and deep hypnotic conditions. Brain Topogr 20:7–14. https://doi.org/10.1007/s10548-007-0024-3
doi: 10.1007/s10548-007-0024-3
pubmed: 17587166
Kindler J, Hubl D, Strik WK, Dierks T, Koenig T (2011) Resting-state EEG in schizophrenia: auditory verbal hallucinations are related to shortening of specific microstates. Clin Neurophysiol 112:1179–1182. https://doi.org/10.1016/j.clinph.2010.10.042
doi: 10.1016/j.clinph.2010.10.042
Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160:636–645. https://doi.org/10.1176/appi.ajp.160.4.636
doi: 10.1176/appi.ajp.160.4.636
pubmed: 12668349
Nishida K, Morishima Y, Yoshimura M, Isotani T, Irisawa S, Jann K, Dierks T, Strik W, Kinoshita T, Koenig T (2013) EEG microstates associated with salience and frontoparietal networks in frontotemporal dementia, schizophrenia, and Alzheimer’s disease. Clin Neurophysiol 124:1106–1114. https://doi.org/10.1016/j.clinph.2013.01.005
doi: 10.1016/j.clinph.2013.01.005
pubmed: 23403263
Kikuchi M, Koenig T, Wada Y, Higashima M, Koshino Y, Strik W, Dierks T (2007) Native EEG and treatment effects in neuroleptic-naïve schizophrenic patients: time and frequency domain approaches. Schizophr Res 97:163–172. https://doi.org/10.1016/j.schres.2007.07.012
doi: 10.1016/j.schres.2007.07.012
pubmed: 17703921
Stahl SM (2013) Stahl’s Essential Psychopharmacology. Cambridge University Press, Cambridge
Yoshimura M, Koenig T, Irisawa S, Isotani T, Yamada K, Kikuchi M, Okugawa G, Yagyu T, Kinoshita T, Strik W, Strik W, Dierks T (2007) A Pharmaco-EEG study on antipsychotic drugs in healthy volunteers. Psychopharmacology 191:995–1004. https://doi.org/10.1007/s00213-007-0737-8
doi: 10.1007/s00213-007-0737-8
pubmed: 17333135
Mackintosh A, Borgwardt S, Studerus E, Riecher-Rössler A, de Bock R, Andreou C (2020) EEG microstates differences in medicated vs. medication-naïve first-episode psychosis patients. Front Psychiatry https://doi.org/10.3389/fpsyt.2020.600606
Achim AM, Maziade M, Raymond E, Olivier D, Mérette C, Roy MA (2011) How prevalent are anxiety disorders in schizophrenia? A meta-analysis and critical review on a significant association. Schizophr Bull 37:811–821. https://doi.org/10.1093/schbul/sbp148
doi: 10.1093/schbul/sbp148
pubmed: 19959704
Buckley PF, Miller BJ, Lehrer DS, Castle DJ (2009) Psychiatric comorbidities and schizophrenia. Schizophr Bull 35:383–402. https://doi.org/10.1093/schbul/sbn135
doi: 10.1093/schbul/sbn135
pubmed: 19011234
Lykouras L, Alevizos B, Michalopoulou P, Rabavilas A (2003) Obsessive–compulsive symptoms induced by atypical antipsychotics. A review of the reported cases. Prog Neuropsychopharmacol Bio Psychiatry 27:333–346. https://doi.org/10.1016/S0278-5846(03)00039-3
doi: 10.1016/S0278-5846(03)00039-3
Lopes da Silva F (1991) Neural mechanisms underlying brain waves: from neural membranes to networks. Electroencephalogr Clin Neurophysiol. https://doi.org/10.1016/0013-4694(91)90044-5
doi: 10.1016/0013-4694(91)90044-5
pubmed: 1718710
Gross-Isseroff R, Hermesch H, Zohar J, Weizman A (2003) Neuroimaging communality between schizophrenia and obsessive compulsive disorder: a putative basis for schizo-obsessive disorder? World J Biol Psychiatry 4:129–134. https://doi.org/10.1080/15622970310029907
doi: 10.1080/15622970310029907
pubmed: 12872207
Gürsel DA, Avram M, Sorg C, Brandl F, Koch K (2018) Frontoparietal areas link impairments of large-scale intrinsic brain networks with aberrant fronto-striatal interactions in OCD: a meta-analysis of resting-state functional connectivity. Neurosci Biobehav Rev 87:151–160. https://doi.org/10.1016/j.neurobiorev.2018.01.016
doi: 10.1016/j.neurobiorev.2018.01.016
pubmed: 29410103
Moritz S, Peters MJ, Laroi F, Lincoln TM (2010) Metacognitive beliefs in obsessive–compulsive patients: a comparison with healthy and schizophrenia participants. Cogn Neuropsychiatry 15:531–548. https://doi.org/10.1080/13546801003783508
doi: 10.1080/13546801003783508
pubmed: 20446128
Forbes MK, Sunderland M, Rapee RM, Batterham PJ, Calear AL, Carragher N, Ruggero C, Zimmerman M, Baillie AJ, Lynch SJ, Mewton L, Slade T, Krueger RF (2021) A detailed hierarchical model of psychopathology: from individuals symptoms up to the general factor of psychopathology. Clin Psychol Sci 9:139–168. https://doi.org/10.1177/2167702620954799
doi: 10.1177/2167702620954799
pubmed: 33758691
pmcid: 7983870
Costas J, Carrera N, Alonso P, Gurriarán X, Segalás C, Real E, Lopez-Sola C, Mas S, Gasso P, Domenech L, Morell M, Quintela I, Lazaro L, Menchon JM, Estivill X, Carracedo A (2016) Exon-focused genome-wide association study of obsessive–compulsive disorder and shared polygenic risk with schizophrenia. Transl Psychiatry. https://doi.org/10.1038/tp.2016.34
doi: 10.1038/tp.2016.34
pubmed: 27023174
pmcid: 4872458
Gürsel DA, Reinholz L, Bremer B, Schmitz-Koep B, Franzmeier N, Avram M, Koch K (2020) Frontoparietal and salience network alterations in obsessive–compulsive disorder: insights from independent component and sliding time window analyses. J Psychiatry Neurosci 45:214–221. https://doi.org/10.1503/jpn.190038
doi: 10.1503/jpn.190038
pubmed: 32167267
pmcid: 7828976
Posner J, Marsh R, Maia TV, Peterson BS, Gruber A, Simpson HB (2014) Reduced functional connectivity within the limbic cortico-striato-thalamo-cortical loop in unmedicated adults with obsessive–compulsive disorder. Hum Brain Mapp 35:2852–2860. https://doi.org/10.1002/hbm.22371
doi: 10.1002/hbm.22371
pubmed: 24123377
Rotgé JY, Guehl D, Dilharreguy B, Tignol J, Bioulac B, Allard M, Burbaud P, Aouizerate B (2009) Meta-analysis of brain volume changes in obsessive–compulsive disorder. Biol Psychiatry 65:75–83. https://doi.org/10.1016/j.biopsych.2008.06.019
doi: 10.1016/j.biopsych.2008.06.019
pubmed: 18718575
White TP, Joseph V, Francis ST, Liddle P (2010) Aberrant salience network (bilateral insula and anterior cingulate cortex) connectivity during information processing in schizophrenia. Schizophr Res 123:105–115. https://doi.org/10.1016/j.schres.2010.07.020
doi: 10.1016/j.schres.2010.07.020
pubmed: 20724114
Dong D, Wang Y, Chang X, Luo C, Yao D (2018) Dysfunction of large-scale brain networks in schizophrenia: a meta-analysis of resting-state functional connectivity. Schizophr Bull 44:168–181. https://doi.org/10.1093/schbul/sbx034
doi: 10.1093/schbul/sbx034
pubmed: 28338943
Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 214:655–667. https://doi.org/10.1007/s00429-010-0262-0
doi: 10.1007/s00429-010-0262-0
pubmed: 20512370
pmcid: 2899886
Lavallé L, Brunelin J, Bation R, Mondino M (2020) Review of source-monitoring in obsessive–compulsive disorder. World J Psychiatry 10:12–20. https://doi.org/10.5498/wjp.v10.i2.12
doi: 10.5498/wjp.v10.i2.12
pubmed: 32149045
pmcid: 7049523
O’Connor K, Aardema F (2003) Fusion or confusion in obsessive–compulsive disorder. Psychol Rep 93:2227–2232. https://doi.org/10.2466/pr0.2003.93.1.227
doi: 10.2466/pr0.2003.93.1.227
Rotgé JY, Langbour N, Guehl D, Bioulac B, Jaafari N, Allard M, Aouizerate B, Burbaud P (2010) Gray matter alterations in obsessive–compulsive disorder: an anatomic likelihood estimation meta-analysis. Neuropsychopharmacology 35:686–691. https://doi.org/10.1038/npp.2009.175
doi: 10.1038/npp.2009.175
pubmed: 19890260
Kapur S (2003) Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry 160:13–23. https://doi.org/10.1176/appi.ajp.160.1.13
doi: 10.1176/appi.ajp.160.1.13
pubmed: 12505794
Menzies L, Chamberlain SR, Laird AR, Thelen SM, Sahakian BJ, Bullmore ET (2007) Integrative evidence from neuroimaging and neuropsychological studies of obsessive–compulsive disorder: the orbitofronto-striatal model revisited. Neurosci Biobehav Rev 10.1016.j.neubiorev.2007.09.005.
Voegler R, Becker MI, Nitsch A, Straube MWHRT (2016) Aberrant network connectivity during error processing in patients with schizophrenia. J Psychiatry Neurosci 41:E3-12. https://doi.org/10.1503/jpn.150092
doi: 10.1503/jpn.150092
pubmed: 26836622
pmcid: 4764490
Fan J, Gan J, Liu W, Zhong M, Liao H, Zhang H, Jinyao Yi, Chan RCK, Tan C, Zhu X (2018) Resting-state default mode network related functional connectivity is associated with sustained attention deficits in schizophrenia and obsessive–compulsive disorder. Front Behav Neurosci 12:319. https://doi.org/10.3389/fnbeh.2018.00319
doi: 10.3389/fnbeh.2018.00319
pubmed: 30618669
pmcid: 6305719
Zermatten A, Van der Linden M, Laroi F, Ceschi G (2006) Reality monitoring and motor memory in checking-prone individuals. J Anxiety Disord 20:580–596. https://doi.org/10.1016/j.janxdis.2005.08.001
doi: 10.1016/j.janxdis.2005.08.001
pubmed: 16198533
Rehn S, Eslick GD, Brakoulias V (2018) A meta-analysis of the effectiveness of different cortical targets used in repetitive transcranial magnetic stimulation (rTMS) for the treatment of obsessive–compulsive disorder (OCD). Psychiatry Q 89:645–665. https://doi.org/10.1007/s11126-018-9566-7
doi: 10.1007/s11126-018-9566-7
Bonini F, Burle B, Liégeois-Chauvel C, Régis J, Chauvel P, Vidal F (2014) Action monitoring and medial frontal cortex: leading role of supplementary motor area. Science 343:888–891. https://doi.org/10.1126/science.1247412
doi: 10.1126/science.1247412
pubmed: 24558161
Ning Y, Zheng S, Feng S, Zhang B, Jia H (2021) Potential locations for non-invasive brain stimulation in treating schizophrenia: a resting-state functional connectivity analysis. Front Neurol. https://doi.org/10.3389/fneur.2021.766736
doi: 10.3389/fneur.2021.766736
pubmed: 34975725
pmcid: 8715096
Harika-Germaneau G, Rachid F, Chatard A, Lafay-Chebassier C, Solinas M, Thirioux B, Millet B, Langbour JN (2019) Continuous theta burst stimulation over the supplementary motor area in refractory obsessive–compulsive disorder treatment: A randomized sham-controlled trial. Brain Stimul 12:1565–1571. https://doi.org/10.1016/j.brs.2019.07.019
doi: 10.1016/j.brs.2019.07.019
pubmed: 31383594
Harika-Germaneau G, Heit D, Chatard A, Thirioux B, Langbour N, Jaafari N (2020) Treating refractory obsessive–compulsive disorder with transcranial direct current stimulation: an open label study. Brain Behav. https://doi.org/10.1002/brb3.1648
doi: 10.1002/brb3.1648
pubmed: 32406608
pmcid: 7375126
Strelets V, Faber PL, Golikova J,Novototsky-Vlasov V, Koenig T, Gianotti LRRR, Gruzelier JH, Lehmann D (2003) Chronic schizophrenics with positive symptomatology have shortened EEG microstate durations. Clin Neurophysiology 10.1016./s1388-2457(03)00211-6.