Breastfeeding and risk of childhood brain tumors: a report from the Childhood Cancer and Leukemia International Consortium.

Breastfeeding Childhood Cancer Childhood brain tumors Childhood cancer Epidemiology Infant feeding Leukemia International Consortium

Journal

Cancer causes & control : CCC
ISSN: 1573-7225
Titre abrégé: Cancer Causes Control
Pays: Netherlands
ID NLM: 9100846

Informations de publication

Date de publication:
Nov 2023
Historique:
received: 28 02 2023
accepted: 26 06 2023
pubmed: 8 7 2023
medline: 8 7 2023
entrez: 8 7 2023
Statut: ppublish

Résumé

Studies report mixed findings regarding the association of breastfeeding with childhood brain tumors (CBT), the leading causes of cancer-related mortality in young people. Our objective was to determine whether breastfeeding is associated with CBT incidence. We pooled data on N = 2610 cases with CBT (including 697 cases with astrocytoma, 447 cases with medulloblastoma/primitive neuroectodermal tumor [PNET], 167 cases with ependymoma) and N = 8128 age- and sex-matched controls in the Childhood Cancer and Leukemia International Consortium. We computed unconditional logistic regression models to estimate the odds ratio (OR) and 95% confidence interval (CI) of CBT, astrocytoma, medulloblastoma/PNET, and ependymoma according to breastfeeding status, adjusting for study, sex, mode of delivery, birthweight, age at diagnosis/interview, maternal age at delivery, maternal educational attainment, and maternal race/ethnicity. We evaluated any breastfeeding versus none and breastfeeding ≥ 6 months versus none. We subsequently performed random effects meta-analysis to confirm our findings, identify potential sources of heterogeneity, and evaluate for outliers or influential studies. Breastfeeding was reported by 64.8% of control mothers and 64.5% of case mothers and was not associated with CBT (OR 1.04, 95% CI 0.94-1.15), astrocytoma (OR 1.01, 95% CI 0.87-1.17), medulloblastoma/PNET (OR 1.11, 95% CI 0.93-1.32), or ependymoma (OR 1.06, 95% CI 0.81-1.40). Results were similar when we restricted to breastfeeding ≥ 6 months and in meta-analyses. Our data suggest that breastfeeding does not protect against CBT.

Identifiants

pubmed: 37421504
doi: 10.1007/s10552-023-01746-3
pii: 10.1007/s10552-023-01746-3
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1005-1015

Subventions

Organisme : NCI NIH HHS
ID : CA47082
Pays : United States
Organisme : NIEHS NIH HHS
ID : R13ES031473
Pays : United States
Organisme : NCI NIH HHS
ID : CA47082
Pays : United States
Organisme : NIEHS NIH HHS
ID : R13ES031473
Pays : United States

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

Curtin SC, Minino AM, Anderson RN (2016) Declines in cancer death rates among children and adolescents in the United States, 1999–2014. NCHS Data Brief 2016 Sep;(257):1–8. https://pubmed.ncbi.nlm.nih.gov/27648773/
Pollack IF, Jakacki RI (2011) Childhood brain tumors: Epidemiology, current management and future directions. Nat Rev Neurol 7:495–506. https://doi.org/10.1038/nrneurol.2011.110
doi: 10.1038/nrneurol.2011.110 pubmed: 21788981
Udaka YT, Packer RJ (2018) Pediatric brain tumors. Neurol Clin 36:533–556. https://doi.org/10.1016/j.ncl.2018.04.009
doi: 10.1016/j.ncl.2018.04.009 pubmed: 30072070
Johnson KJ, Cullen J, Barnholtz-Sloan JS et al (2014) Childhood brain tumor epidemiology: A brain tumor epidemiology consortium review. Cancer Epidemiol Biomarkers Prevention Publ Am Assoc Cancer Res Cospons Am Soc Prevent Oncol 23:2716–2736. https://doi.org/10.1158/1055-9965.EPI-14-0207
doi: 10.1158/1055-9965.EPI-14-0207
Adel Fahmideh M, Scheurer ME (2021) Pediatric brain tumors: Descriptive epidemiology, risk factors, and future directions. Cancer Epidemiol Biomarkers Prev 30:813–821. https://doi.org/10.1158/1055-9965.Epi-20-1443
doi: 10.1158/1055-9965.Epi-20-1443 pubmed: 33653816
Bondy ML, Lustbader ED, Buffler PA, Schull WJ, Hardy RJ, Strong LC (1991) Genetic epidemiology of childhood brain tumors. Genet Epidemiol 8:253–267. https://doi.org/10.1002/gepi.1370080406
doi: 10.1002/gepi.1370080406 pubmed: 1756948
Hemminki K, Kyyrönen P, Vaittinen P (1999) Parental age as a risk factor of childhood leukemia and brain cancer in offspring. Epidemiology 10:271–275
doi: 10.1097/00001648-199905000-00014 pubmed: 10230837
Johnson KJ, Carozza SE, Chow EJ et al (2009) Parental age and risk of childhood cancer: A pooled analysis. Epidemiology 20:475–483. https://doi.org/10.1097/EDE.0b013e3181a5a332
doi: 10.1097/EDE.0b013e3181a5a332 pubmed: 19373093 pmcid: 2738598
Bunin GR, Gallagher PR, Rorke-Adams LB, Robison LL, Cnaan A (2006) Maternal supplement, micronutrient, and cured meat intake during pregnancy and risk of medulloblastoma during childhood: A children’s oncology group study. Cancer Epidemiol Biomarkers Prev 15:1660–1667. https://doi.org/10.1158/1055-9965.Epi-06-0254
doi: 10.1158/1055-9965.Epi-06-0254 pubmed: 16985028
Milne E, Greenop KR, Bower C et al (2012) Maternal use of folic acid and other supplements and risk of childhood brain tumors. Cancer Epidemiol Biomarkers Prev 21:1933–1941. https://doi.org/10.1158/1055-9965.epi-12-0803
doi: 10.1158/1055-9965.epi-12-0803 pubmed: 22941336
Schüz J, Weihkopf T, Kaatsch P (2007) Medication use during pregnancy and the risk of childhood cancer in the offspring. Eur J Pediatr 166:433–441. https://doi.org/10.1007/s00431-006-0401-z
doi: 10.1007/s00431-006-0401-z pubmed: 17345098
Stålberg K, Haglund B, Strömberg B, Kieler H (2010) Prenatal exposure to medicines and the risk of childhood brain tumor. Cancer Epidemiol 34:400–404. https://doi.org/10.1016/j.canep.2010.04.018
doi: 10.1016/j.canep.2010.04.018 pubmed: 20510665
Norwood MS, Lupo PJ, Chow EJ et al (2017) Childhood cancer risk in those with chromosomal and non-chromosomal congenital anomalies in washington state: 1984–2013. PLoS ONE. https://doi.org/10.1371/journal.pone.0179006
doi: 10.1371/journal.pone.0179006 pubmed: 28841669 pmcid: 5571939
Lupo PJ, Schraw JM, Desrosiers TA et al (2019) Association between birth defects and cancer risk among children and adolescents in a population-based assessment of 10 million live births. JAMA Oncol 5:1150–1158. https://doi.org/10.1001/jamaoncol.2019.1215
doi: 10.1001/jamaoncol.2019.1215 pubmed: 31219523
Adel Fahmideh M, Peckham-Gregory EC, Schraw JM et al (2021) Maternal and perinatal factors are associated with risk of pediatric central nervous system tumors and poorer survival after diagnosis. Sci Rep 11:10410. https://doi.org/10.1038/s41598-021-88385-3
doi: 10.1038/s41598-021-88385-3 pubmed: 34001927 pmcid: 8129132
Bjorge T, Sorensen HT, Grotmol T et al (2013) Fetal growth and childhood cancer: A population-based study. Pediatrics 132:e1265–e1275. https://doi.org/10.1542/peds.2013-1317
doi: 10.1542/peds.2013-1317 pubmed: 24167169 pmcid: 3813399
Dahlhaus A, Prengel P, Spector L, Pieper D (2017) Birth weight and subsequent risk of childhood primary brain tumors: An updated meta-analysis. Pediatr Blood Cancer. https://doi.org/10.1002/pbc.26299
doi: 10.1002/pbc.26299 pubmed: 27804208
Shu X, Prochazka M, Lannering B et al (2014) Atopic conditions and brain tumor risk in children and adolescents–an international case-control study (cefalo). Ann Oncol 25:902–908. https://doi.org/10.1093/annonc/mdu048
doi: 10.1093/annonc/mdu048 pubmed: 24608192
Hollanders JJ, Heijboer AC, van der Voorn B, Rotteveel J, Finken MJJ (2017) Nutritional programming by glucocorticoids in breast milk: Targets, mechanisms and possible implications. Best Pract Res Clin Endocrinol Metab 31:397–408. https://doi.org/10.1016/j.beem.2017.10.001
doi: 10.1016/j.beem.2017.10.001 pubmed: 29221568
Teuffel O, Kuster SP, Hunger SP et al (2011) Dexamethasone versus prednisone for induction therapy in childhood acute lymphoblastic leukemia: A systematic review and meta-analysis. Leukemia 25:1232–1238. https://doi.org/10.1038/leu.2011.84
doi: 10.1038/leu.2011.84 pubmed: 21527934
Cacho NT, Lawrence RM (2017) Innate immunity and breast milk. Front Immunol. https://doi.org/10.3389/fimmu.2017.00584
doi: 10.3389/fimmu.2017.00584 pubmed: 28611768 pmcid: 5447027
Dawod B, Marshall JS, Azad MB (2021) Breastfeeding and the developmental origins of mucosal immunity: How human milk shapes the innate and adaptive mucosal immune systems. Curr Opin Gastroenterol 37:547–556. https://doi.org/10.1097/mog.0000000000000778
doi: 10.1097/mog.0000000000000778 pubmed: 34634003
Hardell L, Dreifaldt AC (2001) Breast-feeding duration and the risk of malignant diseases in childhood in sweden. Eur J Clin Nutr 55:179–185. https://doi.org/10.1038/sj.ejcn.1601142
doi: 10.1038/sj.ejcn.1601142 pubmed: 11305266
Greenop KR, Bailey HD, Miller M et al (2015) Breastfeeding and nutrition to 2 years of age and risk of childhood acute lymphoblastic leukemia and brain tumors. Nutr Cancer. https://doi.org/10.1080/01635581.2015.998839
doi: 10.1080/01635581.2015.998839 pubmed: 25646650
Harding NJ, Birch JM, Hepworth SJ, McKinney PA (2007) Breastfeeding and risk of childhood cns tumours. Br J Cancer 96:815–817. https://doi.org/10.1038/sj.bjc.6603638
doi: 10.1038/sj.bjc.6603638 pubmed: 17339892 pmcid: 2360067
Bailey HD, Rios P, Lacour B et al (2017) Factors related to pregnancy and birth and the risk of childhood brain tumours: The estelle and escale studies (sfce, france). Int J Cancer 140:1757–1769. https://doi.org/10.1002/ijc.30597
doi: 10.1002/ijc.30597 pubmed: 28054353
Martin RM, Gunnell D, Owen CG, Smith GD (2005) Breast-feeding and childhood cancer: A systematic review with metaanalysis. Int J Cancer 117:1020–1031. https://doi.org/10.1002/ijc.21274
doi: 10.1002/ijc.21274 pubmed: 15986434
Metayer C, Milne E, Clavel J et al (2013) The childhood leukemia international consortium. Cancer Epidemiol 37:336–347. https://doi.org/10.1016/j.canep.2012.12.011
doi: 10.1016/j.canep.2012.12.011 pubmed: 23403126 pmcid: 3652629
Klein SL, Flanagan KL (2016) Sex differences in immune responses. Nat Rev Immunol 16:626–638. https://doi.org/10.1038/nri.2016.90
doi: 10.1038/nri.2016.90 pubmed: 27546235
Dorak MT, Karpuzoglu E (2012) Gender differences in cancer susceptibility: An inadequately addressed issue. Front Gen. https://doi.org/10.3389/fgene.2012.00268
doi: 10.3389/fgene.2012.00268
Knol MJ, VanderWeele TJ (2012) Recommendations for presenting analyses of effect modification and interaction. Int J Epidemiol 41:514–520. https://doi.org/10.1093/ije/dyr218
doi: 10.1093/ije/dyr218 pubmed: 22253321 pmcid: 3324457
Alli BY (2021) Interactionr: An r package for full reporting of effect modification and interaction. Software Impacts. https://doi.org/10.1016/j.simpa.2021.100147
doi: 10.1016/j.simpa.2021.100147
Viechtbauer W, Cheung MW (2010) Outlier and influence diagnostics for meta-analysis. Res Synth Methods 1:112–125. https://doi.org/10.1002/jrsm.11
doi: 10.1002/jrsm.11 pubmed: 26061377
Linzer DA, Lewis JB (2011) Polca: An r package for polytomous variable latent class analysis. J Statist Software 42:1–29
doi: 10.18637/jss.v042.i10
Bakk Z, Kuha J (2021) Relating latent class membership to external variables: An overview. Br J Math Stat Psychol 74:340–362. https://doi.org/10.1111/bmsp.12227
doi: 10.1111/bmsp.12227 pubmed: 33200411
Schraw JM, Bailey HD, Bonaventure A et al (2022) Infant feeding practices and childhood acute leukemia: Findings from the childhood cancer & leukemia international consortium. Int J Cancer. https://doi.org/10.1002/ijc.34062
doi: 10.1002/ijc.34062 pubmed: 35532209
Shaw AK, Li P, Infante-Rivard C (2006) Early infection and risk of childhood brain tumors (canada). Cancer Causes Control 17:1267–1274. https://doi.org/10.1007/s10552-006-0066-y
doi: 10.1007/s10552-006-0066-y pubmed: 17111258
Andersen TV, Schmidt LS, Poulsen AH et al (2013) Patterns of exposure to infectious diseases and social contacts in early life and risk of brain tumours in children and adolescents: An international case-control study (cefalo). Br J Cancer 108:2346–2353. https://doi.org/10.1038/bjc.2013.201
doi: 10.1038/bjc.2013.201 pubmed: 23652309 pmcid: 3681020
Harding NJ, Birch JM, Hepworth SJ, McKinney PA (2009) Infectious exposure in the first year of life and risk of central nervous system tumors in children: Analysis of day care, social contact, and overcrowding. Cancer Causes Control 20:129–136. https://doi.org/10.1007/s10552-008-9224-8
doi: 10.1007/s10552-008-9224-8 pubmed: 18766446
Pediatrics AAo, (2012) Breastfeeding and the use of human milk. Pediatrics 129:e827–e841. https://doi.org/10.1542/peds.2011-3552
doi: 10.1542/peds.2011-3552
Schüz J, Kaletsch U, Kaatsch P, Meinert R, Michaelis J (2001) Risk factors for pediatric tumors of the central nervous system: Results from a german population-based case-control study. Med Pediatr Oncol 36:274–282. https://doi.org/10.1002/1096-911x(20010201)36:2%3c274::Aid-mpo1065%3e3.0.Co;2-d
doi: 10.1002/1096-911x(20010201)36:2<274::Aid-mpo1065>3.0.Co;2-d pubmed: 11452935
Engelhardt B, Vajkoczy P, Weller RO (2017) The movers and shapers in immune privilege of the cns. Nat Immunol 18:123–131. https://doi.org/10.1038/ni.3666
doi: 10.1038/ni.3666 pubmed: 28092374
Forrester JV, McMenamin PG, Dando SJ (2018) Cns infection and immune privilege. Nat Rev Neurosci 19:655–671. https://doi.org/10.1038/s41583-018-0070-8
doi: 10.1038/s41583-018-0070-8 pubmed: 30310148
Su Q, Sun X, Zhu L et al (2021) Breastfeeding and the risk of childhood cancer: A systematic review and dose-response meta-analysis. BMC Med 19:90. https://doi.org/10.1186/s12916-021-01950-5
doi: 10.1186/s12916-021-01950-5 pubmed: 33845843 pmcid: 8042913
Kwan ML, Buffler PA, Abrams B, Kiley VA (2004) Breastfeeding and the risk of childhood leukemia: A meta-analysis. Public Health Rep 119:521–535. https://doi.org/10.1016/j.phr.2004.09.002
doi: 10.1016/j.phr.2004.09.002 pubmed: 15504444 pmcid: 1497668
Buckles K, Kolka S (2014) Prenatal investments, breastfeeding, and birth order. Soc Sci Med 118:66–70. https://doi.org/10.1016/j.socscimed.2014.07.055
doi: 10.1016/j.socscimed.2014.07.055 pubmed: 25108692
Biro MA, Yelland JS, Brown SJ (2014) Why are young women less likely to breastfeed? Birth, Evidence from an australian population-based survey. https://doi.org/10.1111/birt.12112
doi: 10.1111/birt.12112
Pitonyak JS, Jessop AB, Pontiggia L, Crivelli-Kovach A (2015) Life course factors associated with initiation and continuation of exclusive breastfeeding. Matern Child Health J. https://doi.org/10.1007/s10995-015-1823-x
doi: 10.1007/s10995-015-1823-x
Ogbuanu C, Glover S, Probst J, Liu J, Hussey J (2011) The effect of maternity leave length and time of return to work on breastfeeding. Pediatrics 127:e1414–e1427. https://doi.org/10.1542/peds.2010-0459
doi: 10.1542/peds.2010-0459 pubmed: 21624878 pmcid: 3387873
Beauregard JL, Hamner HC, Chen J, Avila-Rodriguez W, Elam-Evans LD, Perrine CG (2019) Racial disparities in breastfeeding initiation and duration among us infants born in 2015. Morb Mort Weekly Rep 68:745
doi: 10.15585/mmwr.mm6834a3
Bolck A, Croon M, Hagenaars J (2004) Estimating latent structure models with categorical variables: One-step versus three-step estimators. Polit Anal 12:3–27
doi: 10.1093/pan/mph001

Auteurs

Jeremy M Schraw (JM)

Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA. schraw@bcm.edu.
Center for Epidemiology and Population Health, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA. schraw@bcm.edu.

Eleni Th Petridou (ET)

Department of Hygiene, Epidemiology, and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
Hellenic Society for Social Pediatrics and Health Promotion, Athens, Greece.

Audrey Bonaventure (A)

UMR-1153, CRESS, Université de Paris, INSERM, Epidemiology of Childhood and Adolescent Cancers Team, Villejuif, France.

John D Dockerty (JD)

Department of Preventative and Social Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.

Maria Karalexi (M)

Hellenic Society for Social Pediatrics and Health Promotion, Athens, Greece.

Evangelia Ntzani (E)

Center for Evidence-Based Medicine, Department of Health Services, Policy and Practice, School of Public Health, Brown University, Providence, RI, USA.
Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, 45110, Ioannina, Greece.

Claire Infante-Rivard (C)

Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine, McGill University, Montréal, Québec, Canada.

Jacqueline Clavel (J)

UMR-1153, CRESS, Université de Paris, INSERM, Epidemiology of Childhood and Adolescent Cancers Team, Villejuif, France.
National Registry of Childhood Cancers, APHP, Hôpital Paul-Brousse, Villejuif, and CHU de Nancy, Vandoeuvre-Lès-Nancy, France.

Paige M Bracci (PM)

Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA.
Hellen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.

Roberta McKean-Cowdin (R)

Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

Eve Roman (E)

Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK.

Eleanor Kane (E)

Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK.

Friederike Erdmann (F)

Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer, World Health Organization (IARC/WHO), Lyon, France.
Division of Childhood Cancer Epidemiology, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Mainz, Germany.

Joachim Schüz (J)

Section of Environment and Radiation, International Agency for Research On Cancer (IARC/WHO), Lyon, France.

Beth A Mueller (BA)

Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA.

Michael E Scheurer (ME)

Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA.
Center for Epidemiology and Population Health, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.

Classifications MeSH