Rhythmic oscillations in the midbrain dopaminergic nuclei in mice.
4 Hz
awake delta rhythm
slow rhythm
substantia nigra pars compacta
ventral tegmental area
Journal
Frontiers in cellular neuroscience
ISSN: 1662-5102
Titre abrégé: Front Cell Neurosci
Pays: Switzerland
ID NLM: 101477935
Informations de publication
Date de publication:
2023
2023
Historique:
received:
24
12
2022
accepted:
29
05
2023
medline:
10
7
2023
pubmed:
10
7
2023
entrez:
10
7
2023
Statut:
epublish
Résumé
Dopamine release in the forebrain by midbrain ventral tegmental nucleus (VTA) and substantia nigra pars compacta (SNc) neurons is implicated in reward processing, goal-directed learning, and decision-making. Rhythmic oscillations of neural excitability underlie coordination of network processing, and have been reported in these dopaminergic nuclei at several frequency bands. This paper provides a comparative characterization of several frequencies of oscillations of local field potential and single unit activity, highlighting some behavioral correlates. We recorded from optogenetically identified dopaminergic sites in four mice training in operant olfactory and visual discrimination tasks. Rayleigh and Pairwise Phase Consistency (PPC) analyses revealed some VTA/SNc neurons phase-locked to each frequency range, with fast spiking interneurons (FSIs) prevalent at 1-2.5 Hz (slow) and 4 Hz bands, and dopaminergic neurons predominant in the theta band. More FSIs than dopaminergic neurons were phase-locked in the slow and 4 Hz bands during many task events. The highest incidence of phase-locking in neurons was in the slow and 4 Hz bands, and occurred during the delay between the operant choice and trial outcome (reward or punishment) signals. These data provide a basis for further examination of rhythmic coordination of activity of dopaminergic nuclei with other brain structures, and its impact for adaptive behavior.
Identifiants
pubmed: 37426551
doi: 10.3389/fncel.2023.1131313
pmc: PMC10326437
doi:
Types de publication
Journal Article
Langues
eng
Pagination
1131313Informations de copyright
Copyright © 2023 Oberto, Matsumoto, Pompili, Todorova, Papaleo, Nishijo, Venance, Vandecasteele and Wiener.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Behav Neurosci. 2021 Apr;135(2):138-153
pubmed: 34060871
Synapse. 2004 May;52(2):143-52
pubmed: 15034920
Neuropsychopharmacology. 2013 Nov;38(12):2418-26
pubmed: 23736315
Sci Rep. 2018 Feb 1;8(1):2055
pubmed: 29391596
J Neurosci. 2014 Feb 19;34(8):2845-59
pubmed: 24553926
J Neurosci. 2007 May 16;27(20):5414-21
pubmed: 17507563
Behav Pharmacol. 2018 Oct;29(7):569-583
pubmed: 30188354
Trends Cogn Sci. 2007 Jul;11(7):267-9
pubmed: 17548233
J Vis Exp. 2016 Jan 22;(107):e53503
pubmed: 26863331
J Comput Neurosci. 2012 Aug;33(1):53-75
pubmed: 22187161
Nature. 1977 Sep 22;269(5626):340-2
pubmed: 904687
Nat Commun. 2018 Jul 19;9(1):2822
pubmed: 30026489
Physiol Rev. 2015 Jul;95(3):853-951
pubmed: 26109341
Trends Cogn Sci. 2019 Mar;23(3):213-234
pubmed: 30711326
Elife. 2017 Oct 23;6:
pubmed: 29058673
Nature. 2015 Sep 10;525(7568):243-6
pubmed: 26322583
Nat Rev Neurosci. 2014 Feb;15(2):111-22
pubmed: 24434912
Trends Neurosci. 2012 Jul;35(7):422-30
pubmed: 22459161
Eur J Neurosci. 2009 Sep;30(5):848-59
pubmed: 19659455
Nature. 2013 Jun 20;498(7454):363-6
pubmed: 23708967
Neuron. 2011 Oct 6;72(1):153-65
pubmed: 21982376
Nat Neurosci. 2020 Dec;23(12):1655-1665
pubmed: 33230329
Front Comput Neurosci. 2020 Feb 18;14:11
pubmed: 32132914
Sci Rep. 2018 Apr 24;8(1):6432
pubmed: 29691421
Neuroimage. 2010 May 15;51(1):112-22
pubmed: 20114076
Dialogues Clin Neurosci. 2016 Mar;18(1):23-32
pubmed: 27069377
J Neurophysiol. 2015 Apr 1;113(7):2721-32
pubmed: 25652930
Front Cell Neurosci. 2023 Mar 21;17:1131151
pubmed: 37025702
Biol Psychiatry. 2014 Apr 15;75(8):660-70
pubmed: 23810621
Neuron. 2010 Jun 24;66(6):921-36
pubmed: 20620877
Nat Commun. 2021 Jun 10;12(1):3539
pubmed: 34112787
J Neurosci Methods. 2006 Sep 15;155(2):207-16
pubmed: 16580733
Nature. 1989 Mar 23;338(6213):334-7
pubmed: 2922061
Nat Rev Neurosci. 2001 Apr;2(4):229-39
pubmed: 11283746
Behav Neurosci. 2020 Dec;134(6):529-546
pubmed: 32672989
Science. 2007 Jun 15;316(5831):1609-12
pubmed: 17569862
Nat Commun. 2021 May 10;12(1):2605
pubmed: 33972521
Brain. 2002 Jul;125(Pt 7):1558-69
pubmed: 12077005
Nat Neurosci. 2018 Jun;21(6):787-793
pubmed: 29760524
Nat Neurosci. 2006 May;9(5):608-10
pubmed: 16617340
J Neurophysiol. 2012 Apr;107(7):1970-8
pubmed: 22190623
Curr Biol. 2022 Jan 10;32(1):1-13.e6
pubmed: 34699783
PLoS One. 2012;7(1):e29766
pubmed: 22238652
eNeuro. 2020 Mar 30;7(2):
pubmed: 32054621
Nat Rev Neurosci. 2016 Aug;17(8):524-32
pubmed: 27256556
Behav Brain Res. 2014 May 15;265:84-92
pubmed: 24569012