Noradrenergic modulation of play in Sprague-Dawley and F344 rats.

Alpha-2 adrenoceptor F344 Genetics Inbred Norepinephrine Play

Journal

Psychopharmacology
ISSN: 1432-2072
Titre abrégé: Psychopharmacology (Berl)
Pays: Germany
ID NLM: 7608025

Informations de publication

Date de publication:
10 Jul 2023
Historique:
received: 13 04 2023
accepted: 03 07 2023
medline: 10 7 2023
pubmed: 10 7 2023
entrez: 10 7 2023
Statut: aheadofprint

Résumé

For many mammals, engaging in social play behavior as a juvenile is important for cognitive, social, and emotional health as an adult. A playful phenotype reflects a dynamic interplay between genetic framework and experiences that operate on hard-wired brain systems so the relative lack of play in an otherwise playful species may be useful for identifying neural substrates that modulate play behavior. The inbred F344 rat has been identified as a strain that is consistently less playful than other strains commonly used in behavioral research. Norepinephrine (NE) acting on alpha-2 receptors has an inhibitory effect on play and F344 rats differ from a number of other strains in NE functioning. As such, the F344 rat may be particularly useful for gaining insight into NE involvement in play. The objective of this study was to determine whether the F344 rat is differentially sensitive to compounds that affect NE functioning and that are known to affect play behavior. Using pouncing and pinning to quantify play, the effects of the NE reuptake inhibitor atomoxetine, the NE alpha-2 receptor agonist guanfacine, and the NE alpha-2 receptor antagonist RX821002 on play behavior were assessed in juvenile Sprague-Dawley (SD) and F344 rats. Atomoxetine and guanfacine reduced play in both SD and F344 rats. RX821002 increased pinning to a comparable extent in both strains but F344 rats were more sensitive to the play-enhancing effects of RX821002 on pounces. Strain differences in NE alpha-2 receptor dynamics may contribute to the lower levels of play in F344 rats.

Identifiants

pubmed: 37428218
doi: 10.1007/s00213-023-06419-2
pii: 10.1007/s00213-023-06419-2
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Achterberg EJM, Damsteegt R, Vanderschuren LJMJ (2018) On the central noradrenergic mechanism underlying the social play-suppressant effect of methylphenidate in rats. Behav Brain Res 347:158–166. https://doi.org/10.1016/j.bbr.2018.03.004
doi: 10.1016/j.bbr.2018.03.004 pubmed: 29526788
Achterberg EJM, van Kerkhof LWM, Damsteegt R, Trezza V, Vanderschuren LJMJ (2015) Methylphenidate and Atomoxetine Inhibit Social Play Behavior through Prefrontal and Subcortical Limbic Mechanisms in Rats. J Neurosci 35(1):161–169. https://doi.org/10.1523/jneurosci.2945-14.2015
doi: 10.1523/jneurosci.2945-14.2015 pubmed: 25568111 pmcid: 4287139
Achterberg EJM, van Kerkhof LWM, Servadio M, van Swieten MMH, Houwing DJ, Aalderink M, Driel NV, Trezza V, Vanderschuren LJMJ (2016a) Contrasting Roles of Dopamine and Noradrenaline in the Motivational Properties of Social Play Behavior in Rats. Neuropsychopharmacology 41(3):858–868. https://doi.org/10.1038/npp.2015.212
doi: 10.1038/npp.2015.212 pubmed: 26174597
Achterberg EJM, van Swieten MMH, Driel NV, Trezza V, Vanderschuren LJMJ (2016b) Dissociating the role of endocannabinoids in the pleasurable and motivational properties of social play behaviour in rats. Pharmacol Res 110:151–158. https://doi.org/10.1016/j.phrs.2016.04.031
doi: 10.1016/j.phrs.2016.04.031 pubmed: 27154553 pmcid: 4914428
Adams WK, Barrus MM, Zeeb FD, Cocker PJ, Benoit J, Winstanley CA (2017) Dissociable effects of systemic and orbitofrontal administration of adrenoceptor antagonists on yohimbine-induced motor impulsivity. Behav Brain Res 328:19–27. https://doi.org/10.1016/j.bbr.2017.03.034
doi: 10.1016/j.bbr.2017.03.034 pubmed: 28344096
American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Publishing, Arlington, VA
doi: 10.1176/appi.books.9780890425596
Arnsten AF, Scahill L, Findling FL (2007) Alpha-2 adrenergic receptor agonists for the treatment of attention-deficit/hyperactivity disorder: emerging concepts from new data. J Child Adolesc Psychopharmacol 17:393–406. https://doi.org/10.1089/cap.2006.0098
doi: 10.1089/cap.2006.0098 pubmed: 17822336
Baarendse PJJ, Counotte DS, O'Donnell P, Vanderschuren LJMJ (2013) Early social experience is critical for the development of cognitive control and dopamine modulation of prefrontal cortex function. Neuropsychopharmacology 38:1485–1494. https://doi.org/10.1038/npp.2013.47
doi: 10.1038/npp.2013.47 pubmed: 23403694 pmcid: 3682143
Burghardt GM (2005) The Genesis of Animal Play: Testing the Limits. MIT Press, Cambridge, MA
doi: 10.7551/mitpress/3229.001.0001
Cadoni C, di Chiara G (2007) Differences in dopamine responsiveness to drugs of abuse in the nucleus accumbens shell and core of Lewis and Fischer 344 rats. J Neurochem 103(2):487–499. https://doi.org/10.1111/j.1471-4159.2007.04795.x
doi: 10.1111/j.1471-4159.2007.04795.x pubmed: 17666048
Chernoff CS, Hynes TJ, Winstanley CA (2021) Noradrenergic contributions to cue-driven risk-taking and impulsivity. Psychopharmacol 238(7):1765–1779. https://doi.org/10.1007/s00213-021-05806-x
doi: 10.1007/s00213-021-05806-x
Fagen R (1981) Animal Play Behavior. Oxford University Press, New York
Guitart X, Kogan JH, Berhow M, Terwilliger RZ, Aghajanian GK, Nestler EJ (1993) Lewis and Fischer rat strains display differences in biochemical, electrophysiological and behavioral parameters: studies in the nucleus accumbens and locus coeruleus of drug naive and morphine-treated animals. Brain Res 611:7–17. https://doi.org/10.1016/0006-8993(93)91770-s
doi: 10.1016/0006-8993(93)91770-s pubmed: 8518951
Gulley JM, Everett CV, Zahniser NR (2007) Inbred Lewis and Fischer 344 rat strains differ not only in novelty- and amphetamine-induced behaviors, but also in dopamine transporter activity in vivo. Brain Res 1151:32–45. https://doi.org/10.1016/j.brainres.2007.03.009
doi: 10.1016/j.brainres.2007.03.009 pubmed: 17395161 pmcid: 1936412
Hamilton KR, Potenza MN, Grunberg NE (2014) Lewis rats have greater response impulsivity than Fischer rats. Addict Behav 39(11):1565–1572. https://doi.org/10.1016/j.addbeh.2014.02.008
doi: 10.1016/j.addbeh.2014.02.008 pubmed: 24613059 pmcid: 4222187
Harris HW, Nestler EJ (1996) Immunohistochemical studies of mesolimbic dopaminergic neurons in Fischer 344 and Lewis rats. Brain Res 706:1–12. https://doi.org/10.1016/0006-8993(95)01088-2
doi: 10.1016/0006-8993(95)01088-2 pubmed: 8720486
Helmeste DM, Seeman P, Coscina DV (1981) Relation between brain catecholamine receptors and dopaminergic stereotypy in rat strains. Eur J Pharmacol 69:465–470. https://doi.org/10.1016/0014-2999(81)90450-7
doi: 10.1016/0014-2999(81)90450-7 pubmed: 6265228
Herradón G, Ezquerra L, Morales L, Franklin B, Silos-Santiago I, Alguacil LF (2006) Lewis and Fischer 344 strain differences in alpha2-adrenoceptors and tyrosine hydroxylase expression. Life Sci 78(8):862–868. https://doi.org/10.1016/j.lfs.2005.05.093
doi: 10.1016/j.lfs.2005.05.093 pubmed: 16139312
Herradón G, Morales L, Gramage E, Alguacil LF (2008) Comparative study of alpha2-adrenoceptors in Fischer 344 and Lewis rats. Evidence for clonidine-induced place aversion. Life Sci 82(23-24):1186–1190. https://doi.org/10.1016/j.lfs.2008.04.001
doi: 10.1016/j.lfs.2008.04.001 pubmed: 18479715
Humpston CS, Wood CM, Robinson ESJ (2013) Investigating the roles of different monoamine transmitters and impulse control using the 5-choice serial reaction time task. J Psychopharmacol 27(2):213–221. https://doi.org/10.1177/0269881112466182
doi: 10.1177/0269881112466182 pubmed: 23135241
Huskinson SL, Krebs CA, Anderson KG (2012) Strain differences in delay discounting between Lewis and Fischer 344 rats at baseline and following acute and chronic administration of d-amphetamine. Pharmacol Biochem Behav 101(3):403–416. https://doi.org/10.1016/j.pbb.2012.02.005
doi: 10.1016/j.pbb.2012.02.005 pubmed: 22342664 pmcid: 3310270
Kearns DN, Gomez-Serrano MA, Weiss SJ, Riley AL (2006) A comparison of Lewis and Fischer rat strains on autoshaping (sign-tracking), discrimination reversal learning and negative auto-maintenance. Behav Brain Res 169(2):193–200. https://doi.org/10.1016/j.bbr.2006.01.005
doi: 10.1016/j.bbr.2006.01.005 pubmed: 16469395
Liu YP, Lin YL, Chuang CH, Kao YC, Chang ST, Tung CS (2009) Alpha adrenergic modulation on effects of norepinephrine transporter inhibitor reboxetine in five-choice serial reaction time task. J Biomed Sci 16:72. https://doi.org/10.1186/1423-0127-16-72
doi: 10.1186/1423-0127-16-72 pubmed: 19678962 pmcid: 2739512
Madden GJ, Smith NG, Brewer AT, Pinkston JW, Johnson PS (2008) Steady-state assessment of impulsive choice in Lewis and Fischer 344 rats: Between-condition delay manipulation. J Exp Anal Behav 90:333–344. https://doi.org/10.1901/jeab.2008.90-333
doi: 10.1901/jeab.2008.90-333 pubmed: 19070340 pmcid: 2582207
Normansell L, Panksepp J (1985) Effects of clonidine and yohimbine on the social play of juvenile rats. Pharmacol Biochem Behav 22(5):881–883. https://doi.org/10.1016/0091-3057(85)90540-4
doi: 10.1016/0091-3057(85)90540-4 pubmed: 4011641
Panksepp J (1981) The ontogeny of play in rats. Dev Psychobiol 14:327–332. https://doi.org/10.1002/dev.420140405
doi: 10.1002/dev.420140405 pubmed: 7250521
Panksepp J, Siviy SM, Normansell L (1984) The psychobiology of play: Theoretical and methodological considerations. Neurosci Biobehav Rev 8:465–492. https://doi.org/10.1016/0149-7634(84)90005-8
doi: 10.1016/0149-7634(84)90005-8 pubmed: 6392950
Pattij T, Vanderschuren LJMJ (2008) The neuropharmacology of impulsive behaviour. Trends Pharmacol Sci 29(4):192–199. https://doi.org/10.1016/j.tips.2008.01.002
doi: 10.1016/j.tips.2008.01.002 pubmed: 18304658
Pellis SM, McKenna M (1995) What do rats find rewarding in play fighting? An analysis using drug-induced non-playful partners. Behav Brain Res 68:65–73. https://doi.org/10.1016/0166-4328(94)00161-8
doi: 10.1016/0166-4328(94)00161-8 pubmed: 7619307
Pellis SM, Pellis VC (1991) Attack and defense during play fighting appear to be motivationally independent behaviors in muroid rodents. Psychol Rec 41:175–184
doi: 10.1007/BF03395104
Pellis SM, Pellis VC (2007) Rough-and-tumble play and the development of the social brain. Curr Dir Psychol Sci 16:95–98
doi: 10.1111/j.1467-8721.2007.00483.x
Pellis SM, Pellis VC (2009) The Playful Brain: Venturing to the Limits of Neuroscience. Oneworld Publications, Oxford
Pellis SM, Pellis VC, Burke CJ, Stark RA, Ham JR, Euston DR, Achterberg EJM (2022) Measuring Play Fighting in Rats: A Multilayered Approach. Curr Protoc 2(1):e337. https://doi.org/10.1080/21594937.2020.1720121
doi: 10.1080/21594937.2020.1720121 pubmed: 35030300
Pellis SM, Pellis VM (1987) Play-fighting differs from serious fighting in both target of attack and tactics of fighting in the laboratory rat Rattus norvegicus. Aggress Behav 13:227–252
doi: 10.1002/1098-2337(1987)13:4<227::AID-AB2480130406>3.0.CO;2-C
Schneider P, Bindila L, Schmahl C, Bohus M, Meyer-Lindenberg A, Lutz B, Spanagel R, Schneider M (2016a) Adverse Social Experiences in Adolescent Rats Result in Enduring Effects on Social Competence, Pain Sensitivity and Endocannabinoid Signaling. Frontiers. Behav Neurosci 10(203). https://doi.org/10.3389/fnbeh.2016.00203
Schneider P, Hannusch C, Schmahl C, Bohus M, Spanagel R, Schneider M (2014) Adolescent peer-rejection persistently alters pain perception and CB1 receptor expression in female rats. Eur Neuropsychopharmacol 24(2):290–301. https://doi.org/10.1016/j.euroneuro.2013.04.004
doi: 10.1016/j.euroneuro.2013.04.004 pubmed: 23669059
Schneider P, Pätz M, Spanagel R, Schneider M (2016b) Adolescent social rejection alters pain processing in a CB1 receptor dependent manner. Eur Neuropsychopharmacol 26(7):1201–1212. https://doi.org/10.1016/j.euroneuro.2016.04.007
doi: 10.1016/j.euroneuro.2016.04.007 pubmed: 27157075
Siviy SM, Atrens DM, Menendez JA (1990) Idazoxan increases rough-and-tumble play, activity and exploration in juvenile rats. Psychopharmacology 100:119–123.    http://dx.doi.org.ezpro.cc.gettysburg.edu:2048/10.1007/BF02245801
doi: 10.1007/BF02245801 pubmed: 2296619
Siviy SM, Baliko CN (2000) A further characterization of alpha-2 adrenoceptor involvement in the rough-and-tumble play of juvenile rats. Dev Psychobiol 37:24–34. https://doi.org/10.1002/1098-2302(200007)37:1<25::aid-dev4>3.0.co;2-c
doi: 10.1002/1098-2302(200007)37:1<25::aid-dev4>3.0.co;2-c
Siviy SM, Baliko CN, Bowers KS (1997) Rough-and-tumble play behavior in Fischer-344 and Buffalo rats: Effects of social isolation. Physiol Behav 61:597–602. https://doi.org/10.1016/s0031-9384(96)00509-4
doi: 10.1016/s0031-9384(96)00509-4 pubmed: 9108580
Siviy SM, Crawford CA, Akopian G, Walsh JP (2011) Dysfunctional play and dopamine physiology in the Fischer 344 rat. Behav Brain Res 220:294–304. https://doi.org/10.1016/j.bbr.2011.02.009
doi: 10.1016/j.bbr.2011.02.009 pubmed: 21335036 pmcid: 3081852
Siviy SM, Fleischhauer AE, Kuhlman SJ, Atrens DM (1994) Effects of alpha-2 adrenoceptor antagonists on rough-and-tumble play in juvenile rats: evidence for a site of action independent of non-adrenoceptor imidazoline binding sites. Psychopharmacology 113:493–499. https://doi.org/10.1007/BF02245229
doi: 10.1007/BF02245229 pubmed: 7862865
Siviy SM, Love NJ, DeCicco BM, Giordano SB, Seifert TL (2003) The relative playfulness of juvenile Lewis and Fischer-344 rats. Physiol Behav 80:385–394. https://doi.org/10.1016/j.physbeh.2003.09.002
doi: 10.1016/j.physbeh.2003.09.002 pubmed: 14637239
Siviy SM, McDowell LS, Eck SR, Turano A, Akopian G, Walsh JP (2015) Effects of amphetamine on striatal dopamine release, open-field activity, and play in Fischer 344 and Sprague-Dawley rats. Behav Pharmacol 26:720–732. https://doi.org/10.1097/FBP.0000000000000191
doi: 10.1097/FBP.0000000000000191 pubmed: 26397758
Siviy SM, Panksepp J (2011) In search of the neurobiological substrates for social playfulness in mammalian brains. Neurosci Biobehav Rev 35:1821–1830. https://doi.org/10.1016/j.neubiorev.2011.03.006
doi: 10.1016/j.neubiorev.2011.03.006 pubmed: 21414353
Spinka M, Newberry RC, Bekoff M (2001) Mammalian play: Training for the unexpected. Q Rev Biol 76:141–168. https://doi.org/10.1086/393866
doi: 10.1086/393866 pubmed: 11409050
Stark RA, Brinkman B, Gibb RL, Iwaniuk AN, Pellis SM (2023) Atypical play experiences in the juvenile period has an impact on the development of the medial prefrontal cortex in both male and female rats. Behav Brain Res 439:114222. https://doi.org/10.1016/j.bbr.2022.114222
doi: 10.1016/j.bbr.2022.114222 pubmed: 36427590
Swann AD, Birnbaum D, Jaga AA, Dougherty DM, Moeller FG (2005) Acute yohimbine increases laboratory-measured impulsivity in normal subjects. Biol Psychiatry 57:1209–1211. https://doi.org/10.1016/j.biopsych.2005.02.007
doi: 10.1016/j.biopsych.2005.02.007 pubmed: 15866563
Swann AD, Lijffijt M, Lane SD, Cox B, Steinberg JL, Moeller FG (2013) Norepinephrine and impulsivity: effects of acute yohimbine. Psychopharmacology 229:83–94. https://doi.org/10.1007/s00213-013-3088-7
doi: 10.1007/s00213-013-3088-7 pubmed: 23559222 pmcid: 3742556
Trezza V, Damsteegt R, Manduca A, Petrosino S, Van Kerkhof LWM, Pasterkamp RJ, Zhou Y, Campolongo P, Cuomo V, Di Marzo V, Vanderschuren LJMJ (2012) Endocannabinoids in Amygdala and Nucleus Accumbens Mediate Social Play Reward in Adolescent Rats. J Neurosci 32(43):14899–14908. https://doi.org/10.1523/jneurosci.0114-12.2012
doi: 10.1523/jneurosci.0114-12.2012 pubmed: 23100412 pmcid: 3496852
Trezza V, Vanderschuren LJMJ (2008) Cannabinoid and opioid modulation of social play behavior in adolescent rats: Differential behavioral mechanisms. Eur Neuropsychopharmacol 18:519–530. https://doi.org/10.1016/j.euroneuro.2008.03.001
doi: 10.1016/j.euroneuro.2008.03.001 pubmed: 18434104 pmcid: 2490798
Van den Berg CL, Hol T, Van Ree JM, Spruijt BM, Everts H, Koolhaas JM (1999a) Play is indispensable for an adequate development of coping with social challenges in the rat. Dev Psychobiol 34:129–138
doi: 10.1002/(SICI)1098-2302(199903)34:2<129::AID-DEV6>3.0.CO;2-L pubmed: 10086231
Van den Berg CL, Pijlman FTA, Koning HAM, Diergaarde L, Van Ree JM, Spruijt BM (1999b) Isolation changes the incentive value of sucrose and social behaviour in juvenile and adult rats. Behav Brain Res 106:133–142. https://doi.org/10.1016/s0166-4328(99)00099-6
doi: 10.1016/s0166-4328(99)00099-6 pubmed: 10595429
Vanderschuren LJMJ, Niesink RJM, Van Ree JM (1997) The neurobiology of social play behavior in rats. Neurosci Biobehav Rev 21:3090–3326. https://doi.org/10.1016/s0149-7634(96)00020-6
doi: 10.1016/s0149-7634(96)00020-6
Vanderschuren LJMJ, Trezza V (2014) What the laboratory rat has taught us about social play behavior: role in behavioral development and neural mechanisms. Curr Top Behav Neurosci 16:189–212. https://doi.org/10.1007/7854_2013_268
doi: 10.1007/7854_2013_268 pubmed: 24338663
Vanderschuren LJMJ, Trezza V, Griffioen-Roose S, Schiepers OJG, Van Leeuwen N, De Vries TJ, Schoffelmeer ANM (2008) Methylphenidate disrupts social play behavior in adolescent rats. Neuropsychopharmacology 33:2946–2956. https://doi.org/10.1038/npp.2008.10
doi: 10.1038/npp.2008.10 pubmed: 18305462

Auteurs

Stephen M Siviy (SM)

Department of Psychology, Gettysburg College, Gettysburg, PA, 17325, USA. ssiviy@gettysburg.edu.

Michelle A Martin (MA)

Department of Psychology, Gettysburg College, Gettysburg, PA, 17325, USA.

Celeste M Campbell (CM)

Department of Psychology, Gettysburg College, Gettysburg, PA, 17325, USA.

Classifications MeSH